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ABSTRACT

Network forensic analysis is a process that analyzes intrusion evidence captured from net-

worked environment to identify suspicious entities and stepwise actions in an attack scenario.

Unfortunately, the overwhelming amount and low quality of output from security sensors make

it difficult for analysts to obtain a succinct high-level view of complex multi-stage intrusions.

This dissertation presents a novel graph based network forensic analysis system. The ev-

idence graph model provides an intuitive representation of collected evidence as well as the

foundation for forensic analysis. Based on the evidence graph, we develop a set of analysis

components in a hierarchical reasoning framework. Local reasoning utilizes fuzzy inference to

infer the functional states of an host level entity from its local observations. Global reasoning

performs graph structure analysis to identify the set of highly correlated hosts that belong to

the coordinated attack scenario. In global reasoning, we apply spectral clustering and Pager-

ank methods for generic and targeted investigation respectively. An interactive hypothesis

testing procedure is developed to identify ”hidden attackers” from non-explicit-malicious ev-

idence. Finally, we introduce the notion of target-oriented effective event sequence(TOEES)

to semantically reconstruct stealthy attack scenarios with less dependency on ad-hoc expert

knowledge. Well established computation methods used in our approach provide the scalability

needed to perform post-incident analysis in large networks. We evaluate the techniques with

a number of intrusion detection datasets and the experiment results show that our approach

is effective in identifying complex multi-stage attacks.
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CHAPTER 1. INTRODUCTION

With the growing reliance on computer networks for information and resource sharing,

information security has also been an increasingly serious concern for everyone in today’s

cyber-world. Goals of information security are defined by three basic principles: (1) Confiden-

tiality: keep secrecy of sensitive information against unauthorized access; (2) Integrity: prevent

improper changes to information/resources and protect the trustworthiness; (3) Availability:

guarantee legitimate access to information and resources desired. To ensure that informa-

tion systems are protected against threats in all these three aspects, a number of techniques

have been developed and applied in security operations. For instance, firewalls, authentica-

tion, encryption and access control systems are designed for Prevention of attacks. However,

the world of information security is an endless arms race where capability of cyber attackers

constantly on the rise. Software vulnerabilities, misconfiguration in security mechanisms and

insider threats always opens up possibilities for intruders to break in, making it impossible to

provide bullet-proof protection of confidentiality, integrity and availability in practice.

On another front, security sensors such as intrusion detection systems(IDSs) are widely

used for Detection of attacks. However, current intrusion detection techniques are still far

from satisfactory. Firstly, the sheer volume of low-level security alerts generated by these

sensors is often overwhelming. Secondly, IDSs inevitably make two types of mistakes: false

positives, i.e. the alerts generated do not correspond to real malicious activities; false negatives,

i.e. stealthy intrusions are missed without triggering alerts. These problems prevent security

administrators from making meaningful analysis and initiate timely response.

In summary, Prevention and Detection mechanisms are not sufficient to eliminate cyber

attack threats. It is important to develop effective post-incident investigation mechanisms
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that hold attackers responsible for their malicious actions – this is the realm of network foren-

sics. More formally, network forensics is a subfield of digital forensics which aims to identify

suspicious entities in the scene of attack and reconstruct stepwise actions of the attacker by rea-

soning with intrusion evidence captured from networked environments. The area of network

forensics presents a rich problem space, including evidence collection, preservation, analysis

and presentation. Our research focus on the analysis phase of network forensics. Specifically,

this work is motivated by the following major challenges in network forensic analysis:

1. Forensic analysts are overwhelmed by huge volume of low quality evidence. Evidence

from standard security sensors such as IDS alerts contain large amount of “background

noise” that comes from the following two sources: 1. false positives triggered by benign

activities and 2. irrelevant attacks that are not part of the foreground attack scene of

interest. Both of them tend to obscure the important information for identifying attackers

and reconstructing the attack scenario.

2. Cyber attacks are becoming increasingly sophisticated. There exist many multi-stage

attacks that consist of several evolving phases and span over large number of hosts.

However, low level alerts from current security sensors only represent isolated steps in

a complex attack scenario. From a forensic analyst’s point of view, it is important to

intelligently correlate the atomic pieces of evidence to reveal a high-level abstracted view

of what occurred in the attack.

3. Most of the existing proposals for multi-stage attack analysis rely on predefined causality

rules of attack conditions and consequences, or a priori knowledge of system vulnerabil-

ities. Intuitively the number of casuality rules is very large and difficult to encode.

Moreover, they are not able to recognize a coordinated scenario when the relationship

between attacks are new. For post-incident investigation it is also infeasible to get ac-

curate vulnerability state of the systems involved at the time of attack. Therefore in

practice, it is desirable to have an effective method that is applicable to existing security

sensor alarms with less dependency on expert knowledge modeling.
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4. There exists no unified approach to investigate non-explicit-malicious activities that could

evade the detection of usual security sensors, i.e. actions thought benign by IDS but

could have played a role in the coordinated attack. To get a comprehensive view of

the attack, it is important to detect the correlation between alerted behaviors and these

non-explicit malicious activities. Given evidence of explicit intrusions, analysts need

the methodology to generate plausible hypotheses that could be used to guide extended

evidence discovery from heterogeneous sensors. Finally, quantitative evaluation is needed

to identify potential “hidden attack members” from the non-explicit-malicious evidence.

In contrast to these challenges, current practices in network forensic analysis are still mainly

done by manual ad-hoc methods, a time-consuming, error prone and non-scalable process [25].

There exists an increasing need for effective, automated and extensible analysis methods.

1.1 Problem Statement

Major objectives of network forensic analysis can be summarized into two interrelated

problems: Attack group identification and Attack scenario reconstruction. Attack group iden-

tification is the task of discovering the group of entities involved in the attack scenario and

determining the role of each entity in the group, such as Attackers, Victims, Stepping Stones

and Background Attackers. Attack scenario reconstruction is the process of inferring step-wise

actions taken by the attacker to achieve his malicious objective.

This dissertation presents a set of techniques for both Attack group identification and Attack

scenario reconstruction. In essence, we study the problem of

How to effectively analyze forensic evidence from heterogeneous information sources to

identify entities and events relevant to multi-stage attack scenarios in a systematic and scalable

approach?

More specifically, this high level problem formulation can be extended into the following

subproblems:

• How to effectively manage the huge volume of intrusion evidence and filter out irrelevant

noise for a focused analysis?
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• How to perform post-incident intrusion investigation in a scalable, structured and com-

putationally sound framework?

• How to reconstruct stealthy multi-stage attack scenarios with less dependency on hard

coded expert knowledge?

• How to integrate information from heterogeneous information sources into analysis to

identify non-explicit malicious activities of attackers?

Our research presents a modular analysis process, which supports the integration of mul-

tiple analysis components to combat the above mentioned challenges. The evidence graph

model is developed to provide the basis for automated analysis. A set of analysis components

are proposed in a hierarchical reasoning framework based on the evidence graph. The compo-

nents utilize techniques that perform analysis from different views of forensic evidence. More

specifically, we integrate domain knowledge based reasoning with well established mathemati-

cal methods to form a complete analysis flow. We develop a prototype system that implements

the proposed techniques and evaluation is made with various attack traces.

1.2 Research Contributions

The objective of this dissertation is to provide innovative solutions to the challenges identi-

fied in the problem statement. Our approach is distinctively different from traditional intrusion

investigation methods. By performing analysis on a graph representation of intrusion evidence,

we integrate various techniques into a hierarchical analysis framework, including fuzzy reason-

ing, graph clustering, Pagerank methods as well as semantic attack scenario reconstruction.

Major advantages of our approach include:

Effectiveness and Flexibility: In an integrated graph-based reasoning framework we

provide methods for different analysis purposes. By using spectral clustering for generic in-

vestigation, coordinated attack scenarios buried in predominant amounts of false positives are

effectively extracted as significant graph clusters. With the personalized Pagerank algorithm

we are able to incorporate prior known watch list for targeted investigation. Moreover, we
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apply Pagerank methods in hypothesis testing to identify non-explicit “hidden attackers” for a

comprehensive view of the attack. Finally, our cluster evaluation based on the notion of target-

oriented effective event sequence(TOEES) effectively filters out false positives and reconstructs

stealthy multi-stage attack scenarios.

Applicability: Attack modeling in our graph based analysis process is straightforward.

Neither a priori knowledge of host vulnerability nor the labor intensive process of defining

hard coded causality dependence rules between exploits is required. Information needed for

evidence graph construction, aggregation and cluster evaluation can be retrieved from atomic

alerts of current network IDS sensors such as Snort [54]. Compared to traditional causality

based reasoning methods, our proposed techniques can be well applied in many post-incident

analysis cases where comprehensive vulnerability and causality information are not available.

Scalability: We effectively transforms intrusion evidence into a abstracted graph space

for analysis. Spectral clustering and Pagerank methods are performed on the host-centric

aggregated evidence graph where each node represents a host level network entity. With

existing techniques for high performance spectral graph clustering and Pagerank computation

[30], our approach can efficiently handle intrusion investigation in large networks.

Visualization: Our evidence graph model intuitively presents intrusion evidence and anal-

ysis results in multiple levels of abstraction. The raw primary evidence graph built from pre-

processed evidence is a multigraph that embeds detailed information of exploits. Through

evaluation of attack phase and relevant resources, the aggregated evidence graph presents the

attack correlation between distinct hosts in a simple undirected graph for structure analy-

sis. Combination of the two views produce a compact and comprehensive visualization to

investigators. Evidence graphs can be readily visualized using tools such as GraphViz.

The solutions presented in this dissertation represent contributions to the field of network

forensic analysis in the following aspects:

• An extensible evidence graph model that incorporates evidence from heterogeneous evi-

dence sources for analysis and presentation;

• A flexible aggregation scheme for redundancy reduction in raw evidence;
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• A hierarchical reasoning framework that provides integrated analysis results from differ-

ent views:

– Local reasoning that performs functional analysis with fuzzy inference;

– Global reasoning that performs structure analysis on abstracted graph space with

spectral clustering and Pagerank methods.

• An effective and low-modeling-cost correlation scheme based on target-oriented effective

event sequence(TOEES) to reconstruct complex multi-stage attack scenarios.

• A prototype system that implements all the techniques proposed and provides experiment

results with well-known public attack datasets.

This research enriches the state-of-art in network forensic analysis and leads to the de-

velopment of more systematic and automated methods with a mathematically well grounded

model.

1.3 Organization of the Dissertation

The reminder of the dissertation is organized as follows: Chapter 2 reviews the background

knowledge and related research work. Chapter 3 first presents the architecture of our evidence

analysis system, then describes the evidence graph model and hierarchical reasoning framework.

Chapter 4 introduces our spectral graph clustering approach for generic intrusion investigation

and discusses its robustness to background noise. Chapter 5 describes the application of

personalized Pagerank methods for targeted investigation and hidden attacker identification.

Chapter 6 presents automated cluster evaluation and scenario reconstruction schemes based

on target-oriented effective event sequence(TOEES). Finally, Chapter 7 summarizes the thesis

and outlines ideas for future work.
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CHAPTER 2. RELATED WORK

Our proposed approach is closely related to research in network forensics, intrusion detec-

tion, alert correlation, as well as techniques in graph based security analysis. In the following,

we will briefly introduce related work in these areas.

2.1 Network Forensics

Network forensics generally refers to the collection and analysis of network data. It is

an important part of digital forensics that focuses on networked environments. In 2001, the

first Digital Forensic Research Workshop(DFRWS) produced a working definition of Network

Forensics as

“The use of scientifically proved techniques to collect, fuse, identify, examine, correlate, ana-

lyze, and document digital evidence from multiple, actively processing and transmitting digital

sources for the purpose of uncovering facts related to the planned intent, or measured success

of unauthorized activities meant to disrupt, corrupt, and or compromise system components

as well as providing information to assist in response to or recovery from these activities [22].”

As suggested by the definition, analyze and correlate evidence is one of the major chal-

lenges of network forensics. Currently it is still generally an ad-hoc process heavily relies on the

expertise of investigators. To our knowledge, little work has been done in automated network

forensic analysis. Well-known forensics investigation tools like EnCase [19] and Safeback [48]

focus on capture and analysis of evidence from storage media on a single host. Various soft-

ware tools such as tcptrace [60], tcpflow [59], flowtools [21] and netcat [36] support network

traffic capture and session analysis, but lack the mechanism to help investigators understand

and correlate the pieces of evidence they provide. Commercial tools like eTrust network foren-
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sics tool [20] and NetDetector [37] captures raw network data and investigate breaches inside

cooperate networks, however the analysis procedure is still mostly manual and ad-hoc.

ForNet [49] is a distributed logging mechanism that could be deployed in wide area networks

to aid network forensics. ForNet transforms a set of raw network data into a succinct form

named a Synopsis that can be stored for a prolonged period of time for forensic analysis.

However, the ForNet system is limited to the evidence capture stage and does not address the

critical problem of how to automate the process of reasoning about attack scenarios from saved

synopses.

Brian Carrier described a model of event reconstruction process for digital crime inves-

tigation [4]. Although the work is mostly theoretical, it sheds light on the requirements for

developing tools that transform collected evidence into digital crime scenes. Our work is a

starting point to explore the technical considerations of automated network forensic analysis.

2.2 Intrusion Detection Systems

Intrusion detection is deemed as the process of monitoring the events occurring in a com-

puter system or network and analyzing them for signs of intrusions, defined as attempts to

compromise the confidentiality, integrity, availability, or to bypass the security mechanisms of

a computer or network. Generally intrusion detection systems could be categorized based on

audit source or the detection technique used.

Based on the audit source, IDSs can be classified into two major categories: host-based de-

tection and network-based detection [15]. Host-based IDSs reside on individual hosts and pro-

cesses audit data generated by the host’s operating system and applications. On the other hand,

network-based IDSs collect traffic over the network monitored. Generally they inspect packets

promiscuously captured through the network interfaces for analysis. In practice network-based

IDSs are widely deployed to monitor large networks as it is often impractical to maintain host-

based monitoring on each host in the network. In this work we use the open-source network

IDS Snort as a major source of explicit intrusion evidence.

Based on the detection technique, IDSs can be classified into two major categories: misuse
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detection and anomaly detection [15]. Misuse detection encodes known attacks as a set of pat-

terns and detects attacks by matching the audit data against these predefined patterns. Misuse

detection systems can be further divided into stateless and state-based. Stateless systems such

as Bro [3] only match the current event against rules to determine if it is malicious or not. In

comparison, state-based systems such as USTAT [24] define more complex attack patterns with

state transition diagrams, which includes system states and the actions causing state transi-

tions. Not only the current event but also the system state are taken into consideration to see

if the event would lead the system into an alarm-triggering state. Misuse detection systems are

usually faster and has fewer false positives when compared with anomaly detection, however

they are not able to catch novel attacks which do not match know signatures.

Anomaly detection systems generally operates in two phases: training and detection. The

training phase builds profiles to model the “normal” behavior of the system or network being

monitored. In detection phase, alerts are triggered when deviation from the normal profile

is above a certain threshold. Anomaly detection is able to detect novel attacks as they do

not rely on predefined knowledge of specific attacks. However, it is difficult to build adequate

“normal” profiles, as the pattern of non-malicious activities may have wide fluctuations from

time to time and seemingly anomalous behavior is benign in many cases. Moreover, attackers

can even attempt to “train” the anomaly detection system to accept intrusive activities as

normal. As a matter of fact, anomaly detection systems are more difficult to tune and prone

to false negatives as well as false positives.

Although intrusion detection systems(IDS) are not developed for forensic analysis, inves-

tigators have recognized that IDS’s are an important evidence source for network forensics

because it is often the most applicable source to provide first hand information about security

violations in the network. However, the overwhelming volume of low-level alerts and large

quantity of false positives make it difficult for forensics investigators to understand the overall

attack scenario.
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2.3 Intrusion Alert Correlation

From a forensics investigator’s point of view, it is important to reduce the redundancy of

alerts, filter out false positives and intelligently combine individual alerts to identify a clear

picture of what happened in a complex multi-stage attack. The answer to this need is intrusion

alert correlation, the process of identifying alerts that belong to the same attack scenario. By

linking alerts that satisfy certain relationships together, alert correlation aims to reduce the

volume of alerts, suppress the effect of false positives and present the attack scenario on a

higher abstraction level. Past work in alert correlation can be classified into the following

categories.

Correlation methods based on similarity of alert attributes [9, 12, 27, 28, 61] are based on

the notion that alerts belong to the same attack often have similar attributes. Valdes and Skin-

ner [61] defined attributes to be used for comparison, how to evaluate the extent of similarity

and the approach to assign weights for different attributes. We note that correlation of this

category can be better depicted as alert clustering and aggregation. Correlation algorithms of

this type are not able to capture the causal relationships between events. Thus the system in

itself is not sufficient to reconstruct an attack scenario.

The second category of correlation methods are based on attack scenarios predefined by

experts [16, 35] or learned from training datasets [13]. The correlation process is essentially

signature based: IDS alerts are matched with predefined patterns to formulate an attack

scenario. High level languages like STATL [18] and the chronicles formalism [35] have been

developed to describe scenarios. However, an inherent limitation of these techniques is that

they are not able to identify unknown novel attack scenarios. In addition, the large number of

scenario variations makes defining a comprehensive knowledge base of scenarios difficult.

In recent works [10,39,40], a new correlation approach of defining pre-conditions (prereq-

uisites) and post-conditions(consequences) was introduced. Alerts are correlated together if

an earlier alert’s post-condition matches or contributes to the pre-condition of an later alert.

This method has the potential to identify new variations of attack scenarios as we do not need

to specify complete attack scenarios. However, this method requires that appropriate pre and
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post conditions must be manually pre-defined for all individual attacks in the event stream.

If a relevant precondition or postcondition is not modelled, some causal relationships between

alerts could go undetected. Given the large number of attacks and the site-specific nature of

pre and post conditions, effective alert reduction would require a substantial modeling effort,

similar to the effort required to develop complete attack rule sets for misuse-based detection

systems.

Correlation methods based on statistical analysis greatly differ from the previous three in

that it does not require any prior knowledge of attacks. Qin and Lee use the Granger Causality

Test time series algorithm to correlate alerts [44, 45]. The underlying notion is that in multi-

step attack scenarios, alerts should have statistical similarities in their attributes. Theoretically

this method has the ability to recognize novel attack scenarios, however itself is not sufficient

for the complete correlation process. Further verification and analysis is needed to reduce the

effect of false positives and reconstruct the attack scenario.

Alert correlation is a challenging task. We believe that current alert correlation methods

are not satisfactory for network forensics analysis needs due to the following limitations:

• Most of the proposed approaches have limited capabilities in practice because the mod-

eling requirement for domain knowledge is non-trivial and requires a great deal of in-

teraction and maintenance on the part of security analysts. In many cases when the

detailed causality information required for correlation modeling is not readily available,

these systems become ineffective.

• Lack of situational awareness in the correlation process make these methods incapable of

discovering non-explicit events that seem fairly innocent individually, but are malicious

when examined in correlation with certain context.

• Performance of all alert correlation methods are strictly limited by the performance of

IDS. The correlation methods are not robust to deal with fragmentary and incomplete

evidence.

Our evidence analysis approach integrates alert correlation methods and aims to address
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some of their limitations. In our evidence preprocessing module, we extend the attribute-based

method [61] into our flexible evidence aggregation process. We present a simple and applicable

correlation scheme in attack phase and relevant resource based graph aggregation. Finally in

our cluster evaluation module, we develop the target oriented effective sequence(TOEES) that

filters out false positives and reconstructs multi-stage attack scenarios.

2.4 Graph Methods in Security Analysis

Our work is also related to a variety of graph based methods in network security analysis.

Attack graphs are widely used to analyze whether certain goals of the target network can be

achieved by attackers [43,46,47,50,51]. The goals are usually to obtain unauthorized privileges

on targeted network entities. In an attack graph, a starting node represents an attacker at a

specified network location. Nodes represents actions the attacker takes and edges denotes the

changes in network state caused by the actions. Some researchers also use a different notation

that each node represents a state of the network under attack and each edge represents a

malicious activity that leads to network state transition. A full attack graph enumerates all

possible sequences of exploits that could be used to achieve the intrusion goal.

Attack graphs have been mainly constructed to model network vulnerabilities. Researchers

have proposed various methods to generate and analyze attack graphs. Phillips and Swiler [43]

proposed to construct attack graphs based on predefined attack scenarios. Formal languages

such as CAML [57] and LAMBDA [11] are developed to describe describe actions and states

in attack graphs. These languages generally define the preconditions necessary for an attacker

action to succeed and the post-conditions as a result of the attacker step. In recent works,

model-checking methods have been used to automatically generate attack graphs [50,51].

Attack graphs are also used in alert correlation context [58]. For this purpose attack graphs

are first built for the network protected by IDS. Then the incoming IDS alert sequences are

matched against paths in the pre-built graph in order to identify high-level multi-stage attacks.

The application of attack graphs in practice has several major limitations.

• The first problem of most past methods is scalability. Due to the huge volume of low
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level system states and exploits involved, analytical complexity of the attack graph grows

exponentially and become computationally infeasible for realistic large networks. Most

past algorithms have only been able to generate attack graphs on small networks with

fewer than 20 hosts. One of the most scalable research algorithm to date is developed at

George Mason University [1], which requires computation grows at N6( N is the number

of hosts in the network ). It is practically infeasible to compute attack graphs for large

enterprise networks with thousands of hosts.

• The second major problem of many past work in attack graphs is that the attack modeling

process often requires prohibitive low-level details of host, network, and exploits. For

example, information used to describe pre and post conditions for exploits are not readily

available from current vulnerability databases. Therefore extensive human analysis of

vulnerabilities is needed to model the attacks, which is labor intensive and error prone.

Moreover, methods that integrate alerts with attack graphs [58] require accurate up-to-

date host based vulnerability information of the network, which is not realistic at the

time of post-incident investigation.

Graph related methods have also been proposed in intrusion detection and correlation

systems. GrIDS [56] aggregate network data into activity graphs to approximately represent

the causal structure of network activity. Alert correlation graphs are defined in pre/post alert

correlation works [39,40] to represent the causal relationship between intrusion detection alerts,

where nodes represent hyper alerts and edges represent prepare-for relationships between alerts.

Our evidence graph model has a major conceptual difference with graphs in previous work

that it is host-centric. With nodes represent host-level network identities and edges represent

forensic evidence from heterogeneous network sources, the evidence graph model provides

higher level of abstraction and better scalability. Efficient algorithms for the spectral clustering

and Pagerank methods used in our graph analysis approach are readily to support analysis

on large networks. Though the model is less fine-grained, it provides a practical view of the

attack that is commonly applicable in post-incident intrusion analysis.

Graph clustering methods and the Pagerank algorithm have been extensively studied out-
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side of security context( [7,30]). To the best of our knowledge, our approach is the first approach

that applies graph spectral clustering techniques to multi-stage attack analysis. We adapted

the recursive clustering approach in [17] to minimize the need for parameter tuning and a

priori knowledge of the clusters. The Pagerank algorithm [30] is initially developed for ranking

web pages. Mehta et al. [32] proposed to apply the Pagerank algorithm for ranking security

states in attack graphs. In comparison, we adapt the personalized Pagerank algorithm [67] on

evidence graphs for targeted investigation and hidden-attacker-identification.
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CHAPTER 3. GRAPH BASED HIERARCHICAL REASONING

FRAMEWORK

3.1 Network Forensic Analysis System Overview

Figure 3.1 Network forensic analysis system architecture

Figure 3.1 shows the basic architecture of our proposed network forensic analysis system.

Functionality of each component in the architecture is briefly described as follows:

• Evidence collection module collects digital evidence from heterogeneous sensors de-

ployed on the networks and hosts under investigation.

• Evidence preprocessing module transforms collected evidence into standardized for-

mat and reduce the redundancy in raw evidence through aggregation.

• Attack/Assets knowledge base provides knowledge of known exploits as well as the
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networks and hosts under investigation, which are used in graph construction and attack

reasoning.

• Evidence graph construction module generates the evidence graph by retrieving

preprocessed evidence from the depository. Hypotheses and out-of-band information are

also instantiated into the evidence graph through graph edit operations.

• Attack reasoning module performs hierarchical reasoning based on the evidence graph

to identify entities in multi-stage attacks and reconstruct the scenario. Techniques used in

the reasoning process includes fuzzy inference, variations of clustering methods, Pagerank

methods and target-oriented cluster evaluation for scenario reconstruction.

The core of our analysis system is the evidence graph construction module and attack

reasoning module. The graph construction module constructs the evidence graph with prepro-

cessed evidence and updates graph attributes with information retrieved from the knowledge

bases. Following that, the attack reasoning module performs attack scenario inference based

on the graph structure. Through the analyst interface, expert opinions and out-of-band infor-

mation can be instantiated through graph edit operations. The analyst can also incorporate

hypothesis into the evidence graph by formulating specific searches for extended secondary ev-

idence. In return the reasoning process is performed on the updated graph to further evaluate

the hypotheses.

Figure 3.2 illustrates our forensic analysis system from the data flow perspective. The graph

construction module transforms the set of preprocessed primary evidence EP into the initial

raw evidence graph GP , a directed weighted multigraph. Note that the attack reasoning mod-

ule consist of six functional components: Local Fuzzy Inference, Graph Aggregation, Primary

Attack Clustering, Targeted Ranking, Hidden Member Identification and Cluster Evaluation.

Functionalities of the components are as follows:

Local Fuzzy Inference: We apply fuzzy reasoning to infer the functional states of a

graph node from its local observations, which provide an initial view of the roles the host may

play in an attack as well as the context for evidence evaluation.
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Figure 3.2 System data flow

Evidence Graph Aggregation: To facilitate interpretation and analysis of graph struc-

ture, we develop an aggregation scheme based on attack phase and relevant resources to convert

the raw evidence graph GP into the simple aggregated evidence graph GA.

Primary Attack Clustering: In general investigation cases without additional upfront

knowledge, we use clustering techniques to extract significant clusters from the aggregated

evidence graph GA. The set of clusters CP indicate intensive attack activities and provide an

approximation of potential multi-stage intrusion scenarios. Two types of clustering techniques

are explored in our work: seed-based single-linkage clustering and spectral graph clustering.

Targeted Ranking: In cases when a watch list LW is given for targeted investigation,

we apply personalized Pagerank algorithm on the aggregated evidence graph GA to provide

rankings of potential attackers in terms of their relative importance to the specified watch list.

Hidden Member Identification: In this component we aim to identify hidden entities

associated with malicious non-explicit-attack activities in a coordinated attack scenario. We

build an enriched secondary evidence graph based on the primary attack clusters CP and
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hypothesis HF . The list of potential hidden attackers are ranked with respect to their relative

importance in the secondary evidence graph.

Cluster Evaluation: Inputs to the cluster evaluation module are entities identified from

Primary Attack Clustering and Targeted Ranking as well as associated events retrieved from

raw evidence graph GP . We develop an automated approach based on the notion of Target

Oriented Effective Event Sequence to further filter out false positives in the candidate cluster

and reconstruct the attack scenario.

3.2 Evidence Category

In network forensic analysis, an event is an occurrence that changes the state of entities

in the network. A malicious event is an event that serves certain malicious intentions of

the attacker. Therefore we define evidence for network forensics investigation as digital data

that provides information of malicious events that have occurred in a cyber attack scenario,

which can be classified into two categories: primary (foreground) evidence and secondary

(background) evidence.

• Primary evidence refers to information that directly indicates attacks or security policy

violations. Primary evidence generally comes from sensors designed for specific security

purposes such as IDSs.

• Secondary evidence refers to information that is not an explicit indication of exploits or

security violations, but could represent malicious events in certain context. Secondary

evidence may come from various general purpose sensors and in a much higher volume.

Intuitively primary evidence is the triggering point of forensic investigation. Searching for

secondary evidence usually has two objectives: to discover hidden suspicious events that are not

detected by specific security sensors and to evaluate the trustworthiness of primary evidence.

However the huge volume and wide range of secondary evidence present a challenging problem

for forensics analysis, as most event logs are not related to security events. We propose a

flexible approach that uses preliminary analysis results from primary evidence as the guideline
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to formulate hypotheses towards secondary evidence, which is presented in Section 3.6. In our

current proof-of-concept prototype, we focus on two network based evidence sources in each

category: network IDS alerts are used as primary evidence and network flow records are used

as secondary evidence.

3.3 Evidence Preprocessing

Tasks in the preprocessing stage include normalization and aggregation. All types of evi-

dence from sensors are normalized with predefined templates. Following that, aggregation is

performed to reduce redundancy in applicable types of evidence. The pre-processed evidence

are stored into the evidence depository for retrieval in graph construction and attack reasoning.

3.3.1 Evidence Normalization

Objective of the normalization process is to transform evidence from heterogeneous sensors

into a uniform format for analysis. Although attributes of evidence vary with different sources,

the following set of essential fields apply to all categories of evidence and have to be instantiated

in the normalization process:

• ID : Unique index for the evidence record;

• Subject : The set of attributes that define the initiator of underlying event;

• Object : The set of attributes that define the target of underlying event;

• Action: Description of nature of the event such as its classification and possible conse-

quence;

• Time: Time stamp(s) of the underlying event.

For intrusion alerts, we define a simplified template derived from IDMEF [23] to capture

essential alert attributes. The result is denoted as raw alert. Format of the raw alert template

is {AlertID, Classification, SrcIP , DesIP , DetectT ime, HyperID}. The HyperID field is

reserved for the aggregation procedure presented below.
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Similarly, we define a simplified template based on Cisco NetFlow [38] format to uniquely

define a flow record. Format of the network flow template is {FlowID, SrcIP , DesIP ,

SrcPort, Desport, StartT ime, EndTime, Protocol, ByteCount, ServiceType, MonitorID}.

3.3.2 Evidence Aggregation

The large amount of redundancy in current IDS alerts makes it difficult to analyze the

underlying attacks in an efficient manner. For example, a single event often generates many

duplicate alerts in a short period and only one instance need to be kept for analysis purpose.

In addition to redundancy reduction, aggregation also provides a more conceivable view of

the attack. For example, an aggressive scanner would produce thousands of probing related

alerts with the same source address and distinctive target addresses. By using an abstracted

classification for the probe and aggregating all target addresses for the same source address

during certain time frames, we can group these raw alerts into a single hyper alert that clearly

demonstrate the scanner’s activity and intention. In summary the evidence aggregation process

aims to remove the duplicates and generate hyper alerts that are easy to analyze without losing

relevant information.

We use alert aggregation based on similarity of attributes and context requirements to

merge raw alerts into hyper alerts. Format of hyper alerts is {HyperID, Classification,

SrcIP , DesIP , StartT ime, EndTime, Count}. Each hyper alert has a one-to-many relation-

ship with raw alerts. In the hyper alert template, the Count field records the number of raw

alerts that are merged into the hyper alert for statistical evaluation. The HyperID field in

the raw alert template records the unique identification number of the hyper alert it merged

into. The index mapping between raw alerts and hyper alerts enable analysts to backtrack

and examine alerts in finer scale.

We apply a flexible alert aggregation algorithm based on the Leader−Follower model. In

essence it adapts the similarity-based alert correlation method proposed by Valdes and Skinner

[61]. The aggregation criteria is to combine alerts that have the same source-destination pair,

belong to the same attack class and whose time stamp falls in a self-extending time window.
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The time window of hyper alerts is self-extending in that if time stamp of the raw alert falls

outside the [start time, end time] window of hyper alert but the difference is within a predefined

limit T, the corresponding bound of the hyper alert time window is updated with time stamp

of the raw alert. This implies that we are able to merge continuous duplicate raw alerts that

span over a long period into a single hyper-alert with a proper T value. The Leader−Follower

alert aggregation procedure is shown in Algorithm 1.

input : A set of raw alerts r1 . . . rn, time limit T
output: A set of hyper alerts h1 . . .hm

begin
h1 ← r1;
m ← 1;
for i ← 2 to n do

merged ← 0;
for j ← 1 to m do

if ri.sourceaddr = hj .sourceaddr && hj .destaddr = ri.destaddr &&
hj .class = ri.class && hj .starttime− T 6 ri.detecttime 6 hj .endtime + T

then
hj .starttime ← min(hj .starttime, ri.detecttime);
hj .endtime ← max(hj .endtime, ri.detecttime);
ri.hyperid ← hj .id;
hj .count ← hj .count + 1;
merged ← 1;
break;

end
end
if merged = 0 then

m ← m + 1;
hm ← ri;
hm.count ← 1, hm.HyperID ← m;

end
end

end
Algorithm 1: Leader-Follower alert aggregation

Effectiveness of the Leader−Follower aggregation process depends on the specific scenario

being analyzed. Therefore when the initial outcome with Algorithm 1 is not satisfactory, we

also consider the following flexibilities in aggregation criteria for improved results:

Level of abstraction on classification: One important variant that affects the results of
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aggregation is the evaluation of attack classification. A common practice is to take the clas-

sifications from well known exploit collections such as CVE (Common Vulnerabilities and Ex-

posures). However, it is common to observe that multiple different attack classes are defined

for attacks exploiting the same vulnerability or having similar result. It is often desirable to

evaluate attack classifications on a higher abstraction level such that trivial differences are ig-

nored. For example, a “SCAN Nmap TCP” alert and a “SCAN Nmap XMAS” alert generated

by Snort can be merged into one hyper alert with the same abstracted class “SCAN Attack”.

Although higher level of abstraction reduces the hyper alert space, we are aware that it results

in loss of granularity in classification information and may lead to inappropriate aggregation.

Constraint on source/target : The general aggregation criteria in Algorithm 1 needs to

be adapted for specific contexts. For example, by evaluating traces of attacks we discover

that a large portion of raw alerts is triggered by port scan activity, which is usually of little

significance. Therefore we can improve the efficiency of aggregation by using a strategy that

only cares for hosts that are either source or target of large number of scan-related alerts.

The former one to many characteristic often represents a scanner while the latter many to one

characteristic often indicates a potential victim of attack. Consequently the flexible aggregation

criteria uses an abstract type that represents all scan-related alerts and only require match of

either sourceaddr or destaddr. Similarly, alerts triggered by DDOS attacks often exhibit a

many to one pattern and should use an abstract type of “DDOS” class abstraction and require

match only on destaddr.

3.4 Evidence Graph Model

The evidence graph model is the foundation of our forensic analysis process. Functionalities

of the evidence graph model include:

1. The evidence graph provides an intuitive representation of collected forensic evidence.

2. The evidence graph provides the basis for both local functional and global structural

analysis in attack reasoning.
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3. The evidence graph provides a friendly interface that allows the analyst to incorporate

hypotheses and out-of-band information into the reasoning process.

3.4.1 Model Description

Definition 1. An evidence graph is a quadruple G = (N, E, LN , LE), where N is the set of

nodes, E is the set of directed edges, LN is the set of labels that indicate the attributes of

nodes and LE is the set of labels that indicate the attributes of edges. In the evidence graph,

each node ni represents a host-level entity and each edge ei represents a piece of preprocessed

forensic evidence.

In forensics analysis, entities are subjects or objects in the attack scenario that can be mod-

elled at different granularity. Here we choose to represent entities on the host level. Therefore,

each node in the evidence graph is characterized by the following labels:

1. ID : Unique identification of the host-level identity.

2. States: Each node is characterized by a set of fuzzy functional states to provide context

for evidence evaluation and attack scenario analysis. In our prototype, a simple set of

fuzzy states are defined as S={Attacker, Victim, Stepping Stone, Affiliated}. The fuzzy

variable Attacker(AT) indicates the belief that the current node is a source of attack.

The fuzzy variable Victim(VI) indicates the belief that the current node is a target of

attacks. The fuzzy variable Stepping Stone(SS) indicates the belief that the current node

is controlled by an attacker and used as a stepping stone in the scenario. By notion of

“suspicion by association”, the fuzzy variable Affiliated(AF) indicates the belief that the

current node is suspicious because it has certain types of interactions with an attacker,

victim or stepping stone. The set of functional states could be refined, but it is kept

simple in this paper for illustration purposes. Note that these states are not mutually

exclusive. For example, in a data theft scenario, a victim host that was compromised in

an attack could be used as a storage relay to transfer stolen files. Consequently states of

the host will evolve from Victim to both Victim and Affiliated.
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3. Time stamps: Each functional state is associated with two time stamps: Tactivate records

the initial time the state is activated above a certain threshold and Tlatest records the

latest time of update to the state.

4. Value: Each node is associated with a value V ∈ [0, 1], indicating asset value of the

host. For example, an important file server in the protected private network has a higher

importance than a public web server in the DMZ. We note that host value is a quite site

specific metric and extensive knowledge of the network under investigation is needed for

proper assignment.

In addition to general attributed fields assigned in the normalization and aggregation pro-

cess, each edge in the evidence graph is characterized by the following set of attributes:

1. Weight : Weight is a fuzzy value w ∈ [0, 1] that represents the seriousness of evidence. For

example, a probe attempt is assigned lower weight than a buffer overflow exploit as the

former has little impact on the target while the latter could result in unauthorized access

privilege. As shown in Table 3.1, in our prototype weights of known attacks are coarsely

defined w.r.t to its Attack Phase, which can be directly obtained through classifications

in public exploit databases. Details of Attack Phase are described in section 3.5.2.

2. Relevancy : Relevancy value of an edge represents the belief that the underlying action

indicated by the evidence would successfully achieve its expected impact. For intrusion

alerts, there could be three specific cases: relevant true positive, false positive and non-

relevant true positive [29]. Relevant true positive refers to alerts that truly represent an

attack and the attack achieves its expected impact. False positive refers to alerts that

identify a legitimate event as an alert by mistake. Non-relevant true positive refers to

alerts that truly represent an attack but the attack does not achieve its expected impact.
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We define relevancy value for these three cases as follows:

r =





0, false positive/non-relevant true positive;

0.5, unable to verify;

1 relevant true positive.

(3.1)

The process to check the relevancy of an alert is denoted as alert verification. A static

evaluation approach is to compare the prerequisites of an attack with configuration of the

target host. If all prerequisites are completely satisfied, the alert is labelled as relevant

and its relevancy value is assigned as 1. If one or more contradicting configurations

are found, the alert is labelled as non-relevant and its relevancy value is assigned as

0; otherwise we are unable to determine the relevancy value is assigned as 0.5. This

static approach could rule out attacks that are bound to fail because the target host is

not vulnerable. However it cannot guarantee that attacks tagged as relevant are truly

successful, as various other factors could lead to failure of the attack. For example,

because the attack could still fail because of an incorrect parameter. Recently Kruegel

and Robertson [29] proposed an active verification mechanism that checks for traces that

match the attack’s expected outcome on the victim host, but effectiveness of the method

needs further study.

3. Host Importance: Host importance h ∈ [0, 1] is a fuzzy parameter to relate importance of

evidence to value of associated hosts. Our rationale for defining host importance lies in

the idea that events associated with a highly valued host should receive more attention

in intrusion analysis. The host importance for an edge e can be determined as follows:

h(e) = max(Vsrc, Vdst) (3.2)

where Vsrc is value of the source node and Vdst is value of the destination node.
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3.4.2 Discussions

In essence our evidence graph G = (V,E) is a directed multigraph. Given an alarm with

source ip address s and destination ip address d, two vertexes s ∈ V and d ∈ V are added to the

evidence graph. A directed edge e ∈ E = (s, d) is then drawn between s and d corresponding

to the direction of the detected alarm.

The evidence aggregation process aggregates raw alerts into a reduced number of hyper

alerts. Then we draw an edge corresponding to each distinctive hyper alert to create a multi-

graph. As shown in figure 3.3, the number of parallel edges between a pair of hosts B and C

is decided by the set of unique hyper alerts between them. The rationale behind this approach

is that our evidence graph not only maintains the adjacency link structure, but also preserves

detailed information of specific attacks detected. More specifically, our objective is to address

both the needs for structure based and knowledge based analysis. As we will show in chapter 4

and chapter 5, abstracted link structure of the evidence graph is sufficient for structure based

analysis methods such as spectral clustering and personalized Pagerank methods. Through the

link structure we are able to identify candidate identities involved in the attack scenario, i.e.

Attack group Identification. However, knowledge based analysis is always required to evaluate

the candidate identities and filter out false positives, perform Hypothesis testing and eventually

achieve Attack Scenario Reconstruction. For these tasks details of the specific attacks need to

be conveniently embedded in the evidence graph in addition to link structure.

Theoretically, when the alarm is generated by a host-based sensor that resides on the

attacked host, s and d are equivalent and the alarm would be represented by a self-loop in the

evidence graph as shown on host D in figure 3.3. As in this work we only consider network

based sensors, self-loops of this kind will not appear in the evidence graph constructed.

Finally, we calculate priority score for an edge to indicate the overall importance of the

intrusion evidence. The priority score p(e) of an edge e is calculated as the product of its

weight, relevancy and host importance:

p(e) = w(e)× r(e)× h(e) (3.3)

As an example, a Windows DCOM buffer overflow attack is observed to initiate from at-



www.manaraa.com

27

Figure 3.3 Evidence graph as a directed multigraph

tacker s against target t. By prior knowledge we know that t is a Linux server and consequently

the Windows DCOM buffer overflow will have no impact on it. Therefore though weight of

the edge w(e) is high, priority score of the edge is zero as relevancy of the edge is r(e) = 0.

Weight and priority score are defined to provide different views in our reasoning process.

The priority score p(e) is used for attacker and scenario identification. In the above example,

the failed attack has p(e) = 0, which indicates that it has little significance in the attack scenario

because the attacker did not achieve his goal. However, edges with a zero priority score are not

removed from the evidence graph because weight of the edge w(e) is used in local reasoning for

functional state of associated hosts. Though the attack is irrelevant, the unsuccessful attack

attempt still indicates malicious intent of the source host s and consequently the “Attacker”

state of s should be activated.

Note that in post-attack investigation, it is difficult to obtain accurate vulnerability and

network state information for attack verification. Therefore to be conservative we regard

all alerts as relevant for evidence graph construction. On the other hand, if vulnerability

information is available, it could certainly be used to prune away irrelevant edges in the evidence

graph structure and only improve the accuracy of analysis results.

3.4.3 Building Evidence Graph

To construct the evidence graph, the sequence of intrusion evidence is processed in time

order, starting from the first evidence in the record and moving towards the latest evidence.

Evidence with time intervals is added to the graph in order of the start time in their interval.
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input : Stream of evidence in time order
output: Evidence graph G

begin
foreach evidence E in stream do

foreach host V affected by E do
if V does not exist in G then

CreateNode (G,V );
end

end
CreateEdge (G,E);
foreach host V as subject or object in E do

UpdateNode (E, V );
end

end
end

Algorithm 2: Constructing an evidence graph

For each evidence, we evaluate which nodes in the current evidence graph it will affect and

create nodes that do not exist, then create the edge accordingly. The algorithm for building

the evidence graph is listed in Algorithm 2. The UpdateNode function performs inference for

the states of node by causal reasoning via Rule-Based Fuzzy Cognitive Maps(RBFCM), which

we will describe in our hierarchical reasoning framework.

Finally, expert opinions and out-of-band information can also be directly incorporated into

the evidence graph for automated reasoning through the following graph edit operations:

1. Insert a new node n: This represents adding a new suspicious host to the evidence graph.

2. Remove a node n: This represents removing an irrelevant host from the evidence graph.

Note that removing a node implies removing edges associated with the node.

3. Update a node n: This represents changing one or more functional states of the node.

4. Insert a new edge e: This represents adding new intrusion evidence between existing

nodes in the evidence graph.

5. Remove an edge e: This represents removing irrelevant evidence from the evidence graph.
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6. Update an edge e: This represents adjusting the weight or relevancy value of the corre-

sponding evidence.

3.5 Hierarchical Reasoning Framework

Based on the evidence graph, we develop a hierarchical reasoning framework for automated

evidence analysis. In this section we describe two levels of the framework: local reasoning for

functional analysis and global reasoning based on structure analysis.

3.5.1 Local Reasoning: Functional Analysis

The objective of local reasoning is to infer the functional states of an entity from its local

observations. In the evidence graph space, “local” means that the inference is only based on

information of the node itself and its direct neighbors. We argue that keeping track of host

states has significant importance in forensics analysis.

1. Host states provide context for evaluating evidence. There is no absolute “suspicious

value” of events. Actions of attackers are often represented by events that do not seem

suspicious when examined individually without context. For example, legitimate file

transfer connections associated with a healthy host generally do not indicate suspicious

activity. However, an outbound ftp connection initiated from a victim host is likely to be

a data exfiltration attempt that leads back to a host controlled by the attacker. Therefore,

host states provide the context to discover hidden events for further investigation.

2. Host states derived with local observations provide an initial view of the roles the host

may play in an attack. The evolution of host states helps to display the advancing stages

of an attack to the forensics analyst.

The complexity of host systems and cyber attacks makes it difficult to reach a precise

statement about host states. Therefore we use a fuzzy approach towards the problem because

it is powerful in approximating human decision making process that involves qualitativeness
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and inexactness. In the current prototype, we develop causal inference via Rule-Based Fuzzy

Cognitive Maps(RBFCM) to model the states of nodes.

Fuzzy Cognitive Maps(FCM) are actually fuzzy directed graphs that combine neural net-

works and fuzzy logic to predict changes of the system. [5]. Nodes in a FCM are concepts

that change over time and edges represent the causality link between nodes. The weight of

an edge measures how much one concept influences the other. FCM has been used for de-

cision support in many different domains, including network security and intrusion detection

systems [53]. However, FCMs are limited in their capacity to model real-world scenarios for

two reasons. First, generic FCMs can only represent simple monotonic cause-effect relations.

Secondly, FCMs cannot cooperate with traditional fuzzy rules [5]. To express the strength

of causality, domain expert knowledge is required to assign numerical edge weights. However

due to the highly ad-hoc nature of attack traces and lack of training data, it is impractical to

obtain appropriate weights in the network forensics domain.

Rule Based Fuzzy Cognitive Maps(RBFCM) are an evolution of FCM. A RBFCM is essen-

tially a standard rule based fuzzy system plus feedback and mechanisms to deal with causal re-

lations [6]. Compared with the generic FCM, RBFCM is better adapted for modelling complex

dynamic systems because changes to the concept are not simply determined by the weight of the

edges, but are defined by the fuzzy rules relating the concepts and inputs. This is an important

advantage to incorporate non-symmetric and non-monotonic causal relationships. Fuzzy rules

provide the analyst an effective approach to present domain knowledge. As shown in Figure

3.4, a RBFCM consists of fuzzy concepts and fuzzy rule bases. In our context, concepts are

the defined set of functional states {Attacker, V ictim, Stepping Stone, Affiliated}. For each

concept, the respective fuzzy rule bases {RBA, RBV , RBS, RBA} consist of “IF...Then...”

fuzzy rules that define how each concept is affected by values of other concepts and incoming

new evidence.

In the RBFCM shown in Figure 3.4, fuzzy rules are used to map multiple inputs (current

value of states and new evidence) to the output (updated value of states). Note that the edges

among concepts indicate that it is possible to activate any functional state from any other
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Figure 3.4 RBFCM model for local reasoning

functional state. The states are updated in an incremental manner. State values at time t + 1

are determined by the states at time t and new evidences observed during the time interval

[t, t+1). The fuzzy rules are designed from expert knowledge. Below we present several exam-

ples of rules in our RBFCM model. The mapping of numerical ranges for states in the fuzzy

rules is shown in Figure 3.5.

If Back Orifice is detected on host n

Then V ictim state of n is highly activated.

If attack of weight w initiates from host n

Then Attacker state value of n is increased by w.

If V ictim state is high and

Attacker state is high and

Tactivate(AT ) > Tactivate(V I)

Then Stepping Stone state is highly activated.

If ftp connection to host n is detected and

host n’s V ictim state is high and
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0 < Tftp − Tactivate(V I) < Tlimit

Then Affiliated state is medium.

Figure 3.5 Mapping the fuzzy states

In local reasoning, we apply the assumption that states of hosts are monotonic. For exam-

ple, once a host’s Victim state is activated, it will never return to normal unless specifically

instructed by out-of-band knowledge.

The total causal influence on each functional state is defined within the interval [0,1]. To

monotonically map the concept value into the normalized range [0,1], we apply the sigmoid

function in the following form where c is a positive constant.

f(x) =
1

1 + e−cx
(3.4)

3.5.2 Attack Phase and Relevant Resource Based Aggregation

We note that the raw evidence graph is a rudimentary presentation of intrusion evidence.

However the multigraph structure make it difficult for efficient structure based analysis. Many

graph structure analysis algorithms and tools do not provide full support for multigraphs [31].

Therefore an important prerequisite for our global reasoning based on graph structure is to

aggregate the parallel edges between neighbor nodes into a weighted “super edge”. In essence

the edge aggregation process provides an abstraction of information encoded in the original set

of edges. How to assign an appropriate weight to the “super edge” is critical, as the aggregated

weight should be a good approximation of combined effects indicated by the original edge set.

For a pair of neighbor nodes (s, t) in the evidence graph G, let E(s, t) represent the set

of incident edges between s and t. Then we evaluate weight of the “super edge” C(s, t) as a

numeric abstraction of information encoded in the set E(s, t) with higher weight represents
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stronger correlation between s and t. As shown in equation 3.5, a straightforward aggregation

approach is to calculate C(s, t) as the sum of priority scores in the original set of parallel edges

E(s, t).

C(s, t)SUM = C(t, s)SUM =
∑

e∈E{s,t}
p(e) (3.5)

However, this simple aggregation often results in biased weights. Consider the scenario

of large number of network sweeps vs. a single buffer overflow exploit. Intuitively the latter

denotes greater potential for the attacker and more severe adverse effects. In contrast, in the

simple summation approach the former would result in higher aggregated weight.

We develop an enhanced edge aggregation process with two considerations: (1) ease of

modeling and (2) provide a reasonable abstraction of combined effects indicated by the original

set of events.

Our graph aggregation scheme is based on augmenting the primary intrusion evidence with

two attributes: attack phase and relevant resource. Intuitively, a multistage attack scenario

is characterized by a sequence of intrusion events that belong to different attack phases such

as Reconnaissance, Intrusion, Privilege Escalation, Denial of Service, Post Compromise. Here

we define a simple set of attack phases with a name scheme such that the beginning part

represents the general category and the following parts represent refined sub categories.

1. probe map(Reconnaissance): This is an initial reconnaissance step in which the attacker

tries to map topology of the target network and find out live hosts.

2. probe vulnerability(Reconnaissance): This is a follow on reconnaissance step employed to

discover exploitable vulnerabilities on the target systems.

3. attack privilege(Intrusion or Privilege Escalation): In this phase the attacker attempts

to gain unauthorized access privilege to the target system by exploiting a known vulner-

ability. More detailed classification could be based on the level of access privilege such

as attack privilege user and attack privilege admin.
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4. attack dos(Denial of Service): In this phase the attacker attempts to prevent legitimate

access to the target system by corrupting services or exhausting resources.

5. post misc(Post Compromise): In this phase the attacker performs goal-oriented activ-

ities after getting hold of the target system. There exist many subcategories in this

category. For example, post consolidation represents the attacker leverages his access

to install tools such as an backdoor on the victim; post access indicates communication

through persistent control channel to the compromised system; post exfiltration indicates

data exfiltration attempts from compromised host to some external site; post integrity

represents modification or deletion attempts that tamper integrity of the compromised

host.

The second attribute utilized in our augmented evidence model is relevant resource of

attacks. Relevant resources encode information about the system resources utilized by the

attack, i.e. the set of network and host properties the attack attempts to exploit. Currently we

adopt a simple model to succinctly represent relevant resource R as (OS, Service, Application)

which denotes the operating system, type of service and specific application.

Information modeling in our aggregation scheme is straightforward. Both attack phase

classifications and relevant resources are defined in the Intrusion Detection Message Exchange

Format(IDMEF) [23] data model. Practically they can be retrieved from attributes of current

IDS alerts such as Snort [54]. Resource information can also be obtained from vulnerability

databases like OSVDB [42]. Examples of extending primary intrusion evidence(Snort alerts)

with attack phase and relevant resource information are shown in Table 3.1.

Alert Attack Phase Relevant Resource Weight
ICMP PING NMAP probe map any 0.5

RPC sadmind UDP PING probe vul unix sadmind 0.6
WEB-MISC apache DOS attempt attack dos unix apache 0.7

WEB-IIS IDA-IDQ exploit attack privilege admin windows iis 0.8
WEB-FRONTPAGE rad fp30reg.dll access attack privilege admin windows frontpage 0.8
RPC sadmind query with root credential attack privilege admin unix sadmind 0.8

RSERVICES rsh root post access unix rsh 1.0

Table 3.1 Examples of extended snort alerts
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input : A pair of adjacent nodes s and t in primary evidence graph GP

output: Weight C(s, t)PR for edge (s, t) in aggregated evidence graph GA

begin1

Es,t ← set of edges between s and t in GP ;2

Initialize C(s, t)PR ← 0, attack phase and resource set PR ← ∅ ;3

while Es,t is not empty do4

Get e ∈ Es,t with earliest StartTime ;5

Look up attack phase Pe, relevant resource Re and weight we ;6

if (Pe, Re) ⊆ PR then7

continue;8

end9

else10

PR ← PR ∪ (Pe, Re);11

C(s, t)PR ← C(s, t)PR + we;12

end13

Es,t ← Es,t \ e;14

end15

return C(s, t)PR ;16

end17

Algorithm 3: Graph aggregation based on attack phase and relevant resource

We define the attack phase and relevant resource model for graph aggregation such that the

aggregated weight would provide a reasonable representation of effects indicated by the original

set of events. The rationale behind our aggregation scheme is that from the target’s view, only

events with the potential to increase the attacker’s knowledge or capability should be counted

towards the aggregated weight. We note that in multi-stage attacks, each effective step can be

intuitively characterized by the advancement of attack phase or expansion of relevant resources,

i.e. the attacker either proceeds to the next attack phase or attempts to achieve objective of the

current attack phase by expanding the set of resources exploited. Therefore the integrated view

of attack phase and relevant resources provides a unique measure of the attacker’s increasing

knowledge and capability with regards to the specific target. We illustrated the notion through

the following scenarios:

1. The attacker advances in attack phase and continues with the same set of relevant re-

sources. For example, a “RPC Sadmind Ping” alert is followed by a “RPC Sadmind

Overflow” alert. The former alert belongs to phase probe vulnerability while the latter
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advances to attack privilege admin. However, both alerts have the same relevant resource

{Unix rpc sadmind}.

2. The attacker advances in attack phase with different relevant resources. For example,

the “RPC Sadmind Overflow” alert is followed by a “Telnet Access” alert. The former

alert belongs to phase attack privilege admin while the latter advances to post access.

Also the two alerts have different relevant resources where R1 ={Unix rpc sadmind} and

R2={All command telnet}.

3. The attacker remains in the same attack phase and continues with the same relevant

resources. For example, Snort alerts “SNMP request tcp” and “SNMP trap tcp” both

belong to attack phase probe vulnerability and have the same resource R = {all snmp}.

4. The attacker remains in the same attack phase with different relevant resources. For

example, a “MS-SQL version overflow attempt” alert is followed by a “WEB-IIS fpcount

attempt” alert. The two events both belong to the same phase attack admin, while

R1={windows database sql} and R2={windows web iis}.

What scenarios 1, 2 and 4 have in common is that advancement in attack phases and/or

expansion of relevant resources lead to potential increase of the attacker’s knowledge and

capabilities. In both scenario 1 and 2, advanced attack phases show the attacker’s continued

progress in obtaining higher level of capabilities. Scenario 4 indicates an ongoing process of

trying different means to achieve a certain capability, in which more knowledge of the target is

revealed to the attacker. In contrast, for scenario 3 the attacker’s knowledge or capability are

not likely to increase because phase and relevant resource of the attacks overlap each other.

Based on these analysis, detailed procedure for edge aggregation is presented in Algorithm 3.

The stream of primary evidence is evaluated in time order with respect to their phase and

relevant resources. Assuming hash-based lookups take constant time in the inside loop, the

overall computational cost is O(n) where n is the number of edges to aggregate.

With the attack phase and relevant resource based aggregation procedure we transform

the raw evidence graph GP into the aggregated primary evidence graph GA. The aggregated
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primary evidence graph GA = (V,E) is an undirected graph where V is the identical set of

nodes from corresponding evidence graph GP . For each pair s, t ∈ V , there is an undirected

edge e ∈ E if and only if s, t are neighbors in the corresponding raw evidence graph GP .

Weight of an edge e in GA is denoted by w(e) = C(s, t)PR.

3.5.3 Global Reasoning: Graph Structure Analysis

The global reasoning process aims to identify the set of highly correlated hosts that belong

to the coordinated attack scene from structure of the evidence graph. Global reasoning is

based on the assumption that during the procedure of attack, there must be a strong correla-

tion between members of the attack group, and this correlation is exhibited through certain

structural characteristics in the evidence graph. For example, a DDOS attack or an active

scanner would be presented by a star-like topology in the evidence graph, while an unusual

long path could be indication of a stepping stone chain. These distinctive graph components

provide a first approximation of the coordinated attack scenario together with the functional

state estimates from local reasoning.

We approach the global reasoning task as a group detection problem, which is to discover

potential members of an attack group given the intrusion evidence observed. The attack group

detection procedure works in two different phases: (1) create new attack groups by generating

seed for the group and (2) expand existing groups by membership testing. Note that as shown

in Fig 3.2, primary attack clustering analysis is based on the aggregated evidence graph GA.

3.5.3.1 Seed Generation

In the seed generation phase, we aim to discover important nodes in the evidence graph as

initial seeds of attack group. In essence, we would like to select entities that are both function-

ally significant and structurally important. From the functional perspective, the investigator

generally has two options in seed selection. In a forward search manner, it is straightforward

to select external hosts with Attacker state highly activated in the local reasoning process

as initial seeds. In a backward search manner, hosts in the trusted domain with Victim or
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Stepping Stone state highly activated are good candidates of initial seeds.

From the graph structure perspective, we use the eigenvector centrality metric to evaluate

importance of nodes in the evidence graph. Eigenvector centrality is a refined version of

the simple degree metric. Instead of just counting the number of edges incident to a node,

eigenvector centrality score is based on both the number and the quality of edges. The intuition

is that an edge to a node having a high eigenvector centrality score would contribute more than

an edge to a node having a low score. Let centrality score of node i be denoted by xi, which

is proportional to the sum of the centrality score of n’s neighbors:

xi =
1
λ

n∑

j=1

Ai,jxj (3.6)

where A is the adjacency matrix of aggregated evidence graph GA and λ is a constant.

The equation can be rewritten in matrix form as Ax = λx where x becomes an eigenvector

of the adjacency matrix with eigenvalue λ. In practice, we apply the power iteration method

to obtain the dominant eigenvector of evidence graph’s adjacency matrix, which represents

the eigenvector centrality scores of corresponding graph nodes. By integrating the eigenvector

centrality rank with functional state analysis, we can easily formulate queries for efficient seed

selection. For example, “Among all nodes that have Attacker state activated higher than T ,

which one has the highest structural significance?”

3.5.3.2 Group Expansion

In group expansion process, we expect to discover nodes that have strong correlation with

the initial seeds and add them to the attack group. Here we define the distance between two

neighbor nodes s and t as the reciprocal of edge weight in aggregated evidence graph GA, i.e.

d(s, t) = d(t, s) = 1
w(e) . Smaller distance values represent stronger correlation between two

nodes. Group expansion is an iterative process which consists of three basic steps. First, we

identify all external neighbors of current seed members as the set of candidate nodes. Second,

a ranked list is formed based on the distance between each candidate node to current group

members. Finally, the ranked list is cut at a predefined threshold and candidate nodes within
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the distance threshold are added as new seed members of the group. If no candidate node is

within the distance threshold, the group expansion procedure terminates. The procedure is

listed in Algorithm 4.

input : Evidence graph G, initial seed node vs, distance threshold D, step size n

output: The derived attack group group

begin
group ← vs;
neighbors ← ∅;
candidates ← ∅;
repeat

foreach node v in the set group do
neighbors ← FindNeighbour (G, v);
candidates ← candidates ∪ neighbors;

end
foreach node v in the set candidates do

v.distance ← GetDistance (v, group);
end
new ←RankCandidates (candidates,D, n);
group ← group ∪ new;

until no new member is found ;
end

Algorithm 4: Basic attack group expansion process

The FindNeighbors function returns the set of external neighbor nodes of current seed

members. In the GetDistance function, we evaluate the distance between the candidate node

to its nearest seed member. In the RankCandidates function, candidate nodes whose distance

exceeds the threshold are discarded. A ranked list is formed for the remaining candidate nodes

in the order of increasing distance. Given the step size n, we take a greedy approach and the

top n candidate nodes in the ranked list are added to the attack group as new seed members.

In essence the group expansion process can be regarded as a seed based single link clustering

approach. It belongs to the class of hierarchical and agglomerative clustering algorithms, where

each node start being its own cluster and clusters are merged iteratively. The conceptual

difference is that we are only interested in clusters formed around “seed nodes” that possess

both functional and structure significance. We apply the single linkage distance metric in group

expansion, i.e. comparing minimum distance between candidate node and current seeds to the
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distance threshold for membership testing. Other distance metric options such as complete

and average linkage are less appropriate because in scenarios like a stepping stone chain, the

suspicious entity may have strong correlation with single member of the current seed group.

Due to the vast difference in attack traces, selecting appropriate thresholds is not straight-

forward. Lowering the threshold generally leads to higher rate of false positives while raising

the threshold could result in more false negatives. In practice the analyst usually need to

compare the results of a set of incremental thresholds for evaluation. Moreover, the ranking

list often explains more than trying to find the best cut-off threshold.

3.6 Interactive Hypothesis testing

Network forensic analysis is not complete without hypotheses testing. Intuitively, hypothe-

ses are “what if” propositions made for possible explanations of inconsistencies in preliminary

analysis results. For example, “What if the backdoor was uploaded to the victim by FTP?”,

“What if the buffer overflow alert between host s and t is an irrelevant background artifact?”.

Hypothesis testing is inherently an interactive process. As shown in Figure 3.6, the process of

making and evaluating hypothesis based on the evidence graph model consists of the following

steps:

1. Formulate hypotheses based on initial analysis results and out-of-band information.

2. Instantiate formulated hypotheses into the evidence graph with graph edit operations

and extended queries on non-explicit secondary evidence.

3. Perform analysis on the updated evidence graph. Examine the updated results and

reiterate from step 1 for new hypotheses.

Hypotheses can be classified into two major categories: removing irrelevant evidence and

adding missed evidence. We note that the former essentially boils down to the relevancy

evaluation problem discussed in evidence graph model construction. The latter case be further

grouped into the following two types:
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Figure 3.6 Hypothesis testing process overview

• Missed Primary Evidence: Serious attacks could be missed by security sensors due to

their limited coverage and detection rate. In this case, entities in the attack scenario

that should be in the same attack group are split into several isolated components in the

aggregated evidence graph, each of which only represents a part of the complete attack

scenario.

• Missed Secondary Evidence: Steps in the attack scenario could be legitimate operations

that do not trigger security alerts on their own. For example, the attacker could use a

separate host other than the ones employed in direct attacks as the warez server. After

successfully compromising a target, the attacker uploads backdoor and exploit tools from

the warez server to the victim by ftp. We are able to discover the group of attacker and

victims as explicit attacks are captured in primary evidence. However the warez server

will evade detection because the file transfer flows appear benign and are absent from

IDS alerts.

Automated hypotheses generation for missed primary evidence is certainly a direction for

future research, however is out of the scope of this work. Ning et al. [41] proposed a scheme to

hypothesize for missed attacks by (1) similarity of alert attributes and (2) potential prepare-for

relations encoded in equality constraints, which can be integrated with our approach. Through

graph edit operations defined in section 3.4.3, hypotheses can be instantiated as new nodes
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and edges into the evidence graph for local and global reasoning.

We note that it is impractical to apply all secondary evidence in building the initial evidence

graph as most of them are irrelevant to the attack. The overwhelming amount of innocuous

events will not only result in an explosion in graph size but also obscure the foreground attack

scene. Therefore we propose a flexible approach that uses analysis results of primary evidence

to formulate hypotheses for missed secondary evidence. Specifically, the following factors are

considered:

• Association: Benign activities associated with a misfeasor could be suspicious. For

example, a ftp attempt from the V ictim to an outside host could represent the exfiltration

of sensitive data. Moreover, the belief of suspicion could be strengthened with Non-

Coincidence in terms of association. For example, a host that has connections with

several identified SteppingStones in the attack group is more likely to be relevant to the

attack scenario than incidental.

• Classification denotes the event type(s) of interest. It is more prudent to give greater

importance to certain classes of events than others. The classifications are often derived

from specific host based information and consequences of attack. For example, http

connections associated with a web server are arguably not as suspicious as a ssh login.

Also, backdoor tools discovered on a trusted internal host implicitly indicate that file

transfer activities should be examined with more attention.

• Time: In addition to Classification and Association, the range of potentially suspicious

secondary evidence is further narrowed down with temporal constraints, which could be

inferred from activation and update time stamps of functional states in local reasoning

results.

Therefore after the initial evidence graph is constructed from primary evidence, we can

formulate hypotheses for missed secondary evidence based on the triple (Association, Classifi-

cation, Time). By querying the secondary evidence repository, the hypotheses are then instan-

tiated into the enriched evidence graph. Note that defining Classification is more hypothesize-
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and-test than deterministic in nature. Our objective is to allow the investigator flexibly eval-

uate various possibilities of Classification in an interactive manner.

3.7 Experimental Results

In our prototype system for experiments, Snort is used as the network IDS sensor to

generate intrusion alerts. We use softflowd [55] to process the TCPDUMP traces and generate

datagrams in NetFlow format. The OSU flow-tools [21] is used as the collector to capture

NetFlow datagrams. Both raw and preprocessed evidence are stored in a MySQL database.

The local and global reasoning modules are developed with Perl. We also implement a GUI

application based on LEDA [31] for visualization and manipulation of evidence graphs.

Traces of three multi-stage attack scenarios are used to validate our proposed hierarchical

reasoning framework. The first dataset contains a small-scale attack implemented in our own

testbed. To further evaluate the ability of our techniques, we perform experiments on two

public intrusion detection datasets, the MIT Lincoln Lab DARPA dataset [14] and dataset

provided by ARDA contract No. NBCHC030107.

In the preprocessing phase, we use reduction rate to evaluate the efficiency of reducing

redundancy in raw evidence. For intrusion alerts, the reduction rate is defined as one minus

the ratio between number of hyper alerts over number of raw alerts. Similarly for network

flows, the reduction rate is one minus the ratio between size of NetFlow records over that of

raw traffic trace.

To examine the output of our hierarchical reasoning process, we consider the following

possibilities. If a host actually involved in the attack scenario is included in the attack group

and its role is correctly recognized, we define it as a true correlation. A false correlation

denotes that a host not related to the attack scenario is included in the attack group or its role

is misclassified. We call it a missing correlation when a host actually plays a role in the attack

scenario but is not correlated into our attack group. With sufficient ground truth for the attack

scenario, we are able to identify true, false and missing correlations. Two quantitative metrics

are used to evaluate the overall effectiveness of our attack reasoning methods. The reasoned
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attack group represents the set of hosts obtained in group expansion result, while the actual

attack group represents the set of hosts truly involved in the attack scenario.

Accuracy = 1− number of false correlations
number of hosts in the reasoned attack Group

(3.7)

Coverage = 1− number of missing correlations
number of hosts in the actual attack group

(3.8)

3.7.1 Scenario 1

The first multi-stage attack scenario is implemented in our own testbed of around 30

physical hosts and 5 subnets. Multiple exploits, backdoor programs and scanning tools are

used to bring more variety to the scenario. In addition, background traffic including http, ftp,

sftp, ssh and telnet are generated throughout the whole attack process to simulate a more

realistic network environment. Irrelevant random attacks are also included to obscure the

coordinated attack scenario.

For notation convenience we adopt the following labels for hosts involved in the attack

scenario Attacker :192.168.21.3, Stepping Stone 1 : 192.168.25.3, Stepping Stone 2 :192.168.22.4

, Victim: 192.168.23.4 and Ftp Relay : 192.168.24.4. The scenario includes the following steps:

1. Attacker initiates Samba buffer overflow attack against Stepping Stone 1.

2. Attack tools are uploaded from Ftp Relay to Stepping Stone 1 ; also an Netcat backdoor

is started on Stepping Stone 1.

3. Stepping Stone 1 initiates Windows DCOM buffer overflow attack against Stepping Stone

2. Attack tools are uploaded from Ftp Relay to Stepping Stone 2.

4. Stepping Stone 2 initiates Frontpage Server 2000 buffer overflow attack against the Vic-

tim. After break in backdoor tool is uploaded from Ftp Relay to Victim.

5. Sensitive data is transferred from Victim to the Ftp Relay and backdoor connections are

closed.
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(a) Original raw primary evidence graph

(b) Attack phase and resource for correlation evaluation

Figure 3.7 Scenario 1 initial raw evidence graph from primary evidence
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3.7.1.1 Evidence Graph Construction

In preprocessing phase, we use a self-extending time window T of 60 seconds for alert

aggregation. The overall preprocessing results are shown in Table 3.8. The initial raw primary

evidence graph shown in Figure 3.7(a) is then generated from the aggregated hyper alerts.

The number attached to each edge denotes the sequence of corresponding events in time order.

Figure 3.7(b) illustrates the corresponding attribute set Attack Phase, Relevant Resource for

each alert, which are used for correlation evaluation in global reasoning process. Note that

the Ftp Relay does not show up in the initial evidence graph as file transfer activities do not

trigger Snort alerts.

In the next step, hypotheses can be formulated for potentially missed secondary evidence

and instantiated to build the enriched evidence graph, which offers a more comprehensive view

of what happened in the network. Hypotheses for missed secondary evidence are formed with

the triple {Association, Classification, Time}. By observing the existence of backdoor tools

on exploited hosts, it is reasonable to define Classification as all file transfer flows(ftp,tftp).

Association is defined as any host with Victim state activated and Time is extracted from

activation time of the Victim state. The enriched evidence graph is shown in Figure 3.8(a)

where the solid edges represent primary evidence while the dotted edges represent events from

secondary evidence. We notice that several potentially suspicious hosts include the Ftp Relay

are brought up in the enriched evidence graph.

3.7.1.2 Local Reasoning

In the first step, the analyst would examine states of hosts from the local reasoning process.

Based on the RBFCM local reasoning procedure, states of nodes in the evidence graph are

inferred and shown in Table 3.2. The hosts that have “Attacker” state activated are highlighted

in Figure 3.7(a), 3.7(b) and Figure 3.8(a).
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(a) Scenario 1: enriched evidence graph with sec-
ondary evidence

(b) Scenario 1: aggregated evidence graph

Figure 3.8 Scenario 1: enriched evidence graph and aggregated evidence
graph

3.7.1.3 Global Reasoning

First, we compute eigenvector centrality scores of nodes in the initial primary evidence

graph for seed generation. From Table 3.3 we can see that 192.168.25.3 has the highest score.

Also note that in local reasoning it has all states activated. Therefore host 192.168.25.3 is

chosen as the initial seed based on both functional and structural importance.

In the next step, the attack group is constructed incrementally from the initial seed. Dis-

tances between neighbor nodes are shown in the aggregated evidence graph (figure 3.8(b)).

The highlighted oval node is the initial seed and the highlighted square nodes are members

added to the attack group during the group expansion process with distance threshold 1.

By observing the states of members in the attack group we can see that host 192.168.21.3

has Attacker state activated. Hosts 192.168.25.3 and 192.168.22.4 both have Stepping Stone

state activated. Host 192.168.23.4 has both Attacker and V ictim state activated but not

Stepping Stone. Further examination of the activation time of states clearly suggests that host

192.168.21.3 is the initial start point of attack and hosts 192.168.25.3,192.168.22.4 are used as

stepping stones. As the result of hypothesizing for missed secondary evidence, the set of nodes

192.168.24.4, 192.168.21.5, 192.168.21.6, 129.186.215.40 and 129.186.215.41 all have Affiliated

state activated, which suggest that they are possibly involved in malicious non-explicit-attack

activities. However, 192.168.24.4 is affiliated with all attackers and stepping stones in the attack
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Host AT VI SS AF
192.168.22.4 0.85 0.85 0.87 0.84
192.168.25.3 0.85 0.80 0.94 0.84
192.168.21.3 0.80 0 0 0.84
192.168.23.4 0.69 0.85 0 0.82
192.168.24.4 0 0 0 0.84
192.168.22.6 0.85 0.50 0 0

129.186.215.40 0 0 0 0.81
129.186.215.41 0 0 0 0.69
192.168.21.5 0 0 0 0.70
192.168.21.6 0 0 0 0.70

207.171.166.48 0 0.67 0 0
207.171.175.22 0 0.67 0 0
66.150.153.111 0 0.67 0 0
216.52.167.132 0 0.69 0 0
63.240.204.202 0 0.71 0 0

Table 3.2 Scenario 1: local functional states

Host Eigenvector centrality
192.168.25.3 0.68
192.168.21.3 0.53
192.168.22.4 0.46
192.168.23.4 0.21
192.168.22.6 0.07

216.52.167.132 0.03
207.171.166.48 0.01
207.171.175.22 0.01
66.150.153.111 0.008
63.240.204.202 0.008

Table 3.3 Scenario 1: eigenvector centrality scores

group while any other node is only affiliated with one member. Though more investigation is

needed, it is reasonable to conclude that 192.168.24.4 is more suspicious than 129.186.215.40

due to its higher degree of non-coincidence. We also note that although 192.168.22.6 is labelled

as an attacker in local reasoning, it is isolated from the major attack group and regarded as a

irrelevant background attacker. The coverage and accuracy of reasoning is shown in Table 3.9.

3.7.2 Scenario 2

The second dataset we examine is the MIT Lincoln Lab 2000 DARPA intrusion detection

scenario 2.0.2. The LLDOS 2.0.2 dataset contains a series of attack sessions that can be

grouped into the following stages:

1. The attacker probes public DNS server of the target network via a HINFO query.

2. The attacker compromises the DNS server by exploiting the Solaris Sadmind vulnerabil-

ity.

3. The attacker uploads attack scripts and mstream DDoS software to the compromised

DNS server via FTP.
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4. The attacker telnets to the compromised DNS server. Then the probing and Sadmind

exploit process is repeated towards hosts in the network. After successfully breaking into

one Solaris host, the attacker uploads mstream software via FTP.

5. The attacker access the compromised hosts via telnet and initiates DDoS attack towards

an external web server.

3.7.2.1 Evidence Graph Construction

The attack scenario lasts about 1 hour and 45 minutes. In preprocessing, a self-extending

time window T of 60 seconds is used in alert aggregation. We note that the general aggregation

criteria does not perform well because most alerts focus on a limited number of targets. Thus

we free up the constraint on Desaddr field to better model the many-to-one pattern in raw

alerts. The overall preprocessing results are shown in Table 3.8.

Given the initial evidence graph, the analyst can filter out irrelevant events for a clearer

view. In this scenario we arguably ignore all Reconnaissance alerts that are not followed by

more advanced Intrusion or Post Compromise alerts. In formulating hypotheses for missed

secondary evidence, we define Classification as all file transfer(ftp,tftp) and remote access

(ssh,rlogin,telnet) flows. Association is defined as any host with Attacker or Victim state

activated. and Time is extracted from activation time of the corresponding functional states.

For clearer illustration, we only show part of the enriched evidence graph corresponding to the

reasoned attack group in Figure 3.9.

3.7.2.2 Local and Global Reasoning Results

In local reasoning process, functional states of nodes in Figure 3.9 are shown in Table 3.4.

In global reasoning phase, we first compute eigenvector centrality to evaluate the impor-

tance of each node in the evidence graph. Top nodes in terms of eigenvector centrality score

are shown in Table 3.5.

In the next step, we examine the effectiveness of seed based single link clustering. As

shown in Table 3.5, node 131.84.1.31 has the highest eigenvector centrality score. Local rea-
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Figure 3.9 Scenario 2: enriched evidence graph with extracted attack
group

Host AT VI SS AF
202.77.162.213 0.84 0 0 0.84
172.16.115.20 0.84 0.84 0.99 0.84
172.16.112.50 0.82 0.84 0.99 0.84
172.16.112.207 0 0.65 0 0

131.84.1.31 0 0.99 0 0
172.16.116.194 0.82 0 0 0
172.16.112.100 0.80 0.80 0 0.84

Table 3.4 Scenario 2: functional states from local reasoning

soning shows that 131.84.1.31 has a highly activated V ictim state. Thus we start by choosing

131.84.1.31 as the initial seed. As shown in the left side of Figure 3.9, the result cluster

has a star topology in which edges correspond to mstream DOS alerts, which intuitively in-

dicates the many-to-one DDoS attack pattern. However it is an isolated component in the

evidence graph due to spoofed IP addresses. To further explore the attack scenario, we choose

172.16.112.50 as the seed, which has the second highest eigen centrality score and an active

Stepping Stone state. With threshold set to 80 percent of all correlation scores, the result

attack group is shown in Figure 3.9 where the highlighted oval node represents the seed and
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Host Eigenvector centrality
131.84.1.31 0.78

172.16.112.50 0.25
172.16.112.100 0.18
172.16.114.50 0.17
172.16.113.148 0.14
172.16.115.20 0.14
172.16.112.207 0.13

Table 3.5 Scenario 2: eigenvector centrality scores in global reasoning

highlighted square nodes represent members in group expansion. From Table 3.4 we can see

that host 202.77.162.213 has Attacker state activated. Hosts 172.16.115.20 and 172.16.112.50

both have SteppingStone state activated while host 172.16.112.207 have only V ictim state

activated. By comparing the activation time of these states, it is straight forward to see that

202.77.162.213 started the attack and the attacker initially broke into the protected network

through 172.16.115.20. Following that 172.16.115.20 fans out attacks against 172.16.112.50

and 172.16.112.207. Though host based information is needed for validation, 172.16.112.50

appears more likely to be compromised as its SteppingStone state has been activated.

We can see that the attack group and major attack steps in the ground truth are suc-

cessfully extracted. The false correlations 172.16.116.194 and 172.16.112.100 are caused by

irrelevant background attacks. Further host based investigation is needed to filter out these

artifacts. Note that for target of the DDoS attack 131.84.1.31, its V ictim state is activated im-

mediately after the activation time of SteppingStone state of 172.16.115.20 and 172.16.112.50,

which suggests a strong logical relation between the two separated attack components. Overall

coverage and accuracy of the scenario is shown in Table 3.9.

3.7.3 Scenario 3

Finally, we perform experiments on an attack dataset prepared under ARDA contract

No.NBCHC030117 which initially funded this work. In the ARDA “Bankshot” dataset a

multistage attack scenario is implemented in a network with multiple subnets and several

hundred hosts. Background traffic and exploits are calibrated to the level of real-world traces
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collected from a large corporate network. Compared with previous scenarios, this is a more

realistic example of network forensic investigation in a large scale network where the foreground

attacks are masqueraded by huge volume of background noise. Specifically, over 99.9%

of alerts generated from the dataset are false alarms or irrelevant background

attacks. We note that this multi-stage attack scenario is quite stealthy in that the attacker

changes identity at different stages and uses compromised host inside the trusted domain as

the “Stepping Stone”. From the ground truth, the whole attack can be split into the following

phases:

1. The attacker probes the protected network, then launches a failed exploit attempt against

a Windows host from a different source.

2. The attacker launches attack against a Linux host from a different source and successfully

compromises it through a web server exploit.

3. The attacker uses the compromised Linux host to probe other hosts inside the protected

network, then launch attacks and breaks into one of them.

4. The attacker exfiltrates sensitive data from compromised hosts and exits.

3.7.3.1 Evidence Graph Construction

The attack scenario lasts about 60 minutes. In the preprocessing stage, we use the general

aggregation criteria with a self-extending time window T of 60 seconds. The overall prepro-

cessing results are shown in Table 3.8.

Similar to scenario 2 we also ignore Reconnaissance alerts without correlation to more ad-

vanced Intrusion or Post Compromise alerts. Only significant scanners that initiate intensive

probing activities are kept in the evidence graph. For missed secondary evidence, we define

Classification as all file transfer(ftp,tftp) and remote access (ssh,rlogin,telnet) flows. Associa-

tion is defined as any host with Attacker or Victim state activated and Time is extracted from

activation time of the functional states. The part of enriched evidence graph corresponding to

reasoned attack group is shown in Figure 3.10.
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Figure 3.10 Scenario 3: enriched evidence graph with extracted attack
groups

3.7.3.2 Local and Global Reasoning Results

States of nodes inferred in the local reasoning process are shown in Table 3.6. Top nodes in

terms of eigenvector centrality score are shown in table 3.7. In global reasoning, 74.205.114.158

is selected as the initial seed as it has the highest centrality score and Attacker state activated.

However, the group expansion process fails to find other members of the attack group because

edges incident to 74.205.114.158 all represent scanning activities that have a low correlation

score. To further explore the dataset, we select node 100.10.20.8 as the second seed, which has

the next highest centrality score and both Attacker and V ictim state activated. By setting

the threshold at 90 percent of all correlation scores, the result attack group is shown in Figure

3.10 where the highlighted square nodes represent members expanded from 100.10.20.8.

In the next step, local and global reasoning results are combined to extract the attack

group and scenario. It is intuitive to observe that 74.205.114.158 initiates intensive probing

activities and has Attacker state activated, which correctly identifies one external attacker

in step 1. The second seed 100.10.20.8 is also correctly identified as the V ictim in step 3,

but its Attacker state is incorrectly activated due to irrelevant background attacks against
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Host AT VI SS AF
74.205.114.158 0.69 0 0 0
42.152.69.166 0.80 0 0 0
100.10.20.4 0 0.69 0 0

100.20.200.15 0.69 0 0 0
100.10.20.8 0.79 0.80 0 0
100.20.1.3 0.80 0 0 0

100.10.20.20 0 0.69 0 0.84

Table 3.6 Scenario 3: functional states from local reasoning

Host Eigenvector centrality
74.205.114.158 0.93

100.10.20.8 0.21
100.10.20.4 0.08

100.20.200.15 0.07
100.10.20.20 0.06
42.152.69.166 0.02

100.20.1.3 0.01

Table 3.7 Scenario 3: eigenvector centrality scores in global reasoning

100.10.20.20. Host 100.20.1.3 is also a false correlation caused by background noise, the similar

pattern of attack against the Windows IIS vulnerability makes it difficult to identify it without

host based information. Two external attackers 168.225.9.78 and 91.13.103.83 in step 2 are

absent from the evidence graph because of missed primary evidence. As no further connections

were established between the two absent attackers to other members of the attack group, we

are not able to identify them even with the enriched evidence graph. According to the ground

truth, the attacker breaks into host 100.20.200.15 and used it as a stepping stone. In our

analysis, though 100.20.200.15 is correctly included in the attack group, it has only Attacker

state activated because the earlier exploits against it evaded detection of Snort. The analyst

has to rely on out-of-band information that 100.20.200.15 is an internal trusted server to

reason it was potentially compromised. Finally, we note that host 100.10.20.4 has the third

highest eigenvector centrality score and V ictim state activated, however it is not related to

the attack group expanded from 100.10.20.8. By selecting 100.10.20.4 as the initial seed, the

external attacker 42.152.69.166 is extracted in group expansion, which reveals the failed exploit



www.manaraa.com

55

Scenario 1 Scenario 2 Scenario 3
TCPDUMP 300 MB 118 MB 3.6 GB

Traffic NetFlow 6.4 MB 10.6 MB 11.1 MB
Reduction 97.87% 91.0% 99.6%
Raw Alerts 7502 52815 58715

Alerts Hyper Alerts 21 150 625
Reduction 99.72% 99.7% 98.9%

Table 3.8 Preprocessing results for the 3 scenarios

Scenario 1 Scenario 2 Scenario 3
Accuracy 83.3% 71.4% 57.1%
Coverage 100% 100% 71.4%

Table 3.9 Accuracy and coverage for 3 scenarios

attempt in attack step 1.

From Table 3.9 we can see that false negatives in primary evidence significantly degrade the

coverage and accuracy of our analysis results. However, our functional and structural metrics

still effectively extract the major identities and steps in the attack scenario. Moreover, a strong

association between the three attack groups can be observed from the fact that the activation

time of Attacker state in 74.205.114.158, 42.152.69.166 and 100.20.200.15 closely follows each

other.
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CHAPTER 4. GLOBAL REASONING WITH SPECTRAL

CLUSTERING METHODS

In our hierarchical reasoning framework, global reasoning relies on analyzing structure of

the evidence graph, which contains both the coordinated attack and irrelevant background

noise. In the following two chapters we present techniques to discover multi-stage intrusions

from a graph structure perspective, including spectral clustering and Pagerank methods.

4.1 Motivation

The global reasoning process in Chapter 3 is performed in two phases: the seed generation

phase aims to discover important suspicious entities as initial seeds of attack group and the

group expansion phase is based on the invariant that entities belong to the attack scenario of

interest should be strongly correlated by suspicious relations. We first start with a seed host

chosen based on functional state and graph centrality metrics. Following that the attack group

is extended by iteratively adding nodes with correlation strength above a predefined threshold

as new members of the group. The attack scenario is reconstructed from the extracted subgraph

of correlated nodes and corresponding functional states from local fuzzy reasoning. Limitation

of this approach is that the reasoning process is inefficient for large scale analysis. Especially,

the iterative group expansion phase is computationally expensive for massive graphs.

Intrusion investigation in its most generic form is analogous to finding the needle in the

haystack. Now that we have transformed collected evidence into the aggregated evidence graph,

advanced graph clustering techniques can be used to discover multi-stage attacks embedded

in the graph structure. In recent graph theory [34] and link analysis [26] work, graph spectral

methods have been well studied to evaluate topological structure of large complex graphs.
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We find graph spectral methods will provide more systematic, flexible and efficient solutions

for analyzing structural characteristics of the evidence graph. More specifically, we aim to

consolidate the two phases of global reasoning process to provide a single-step solution for

Attack Group Identification.

In this chapter we present how spectral clustering methods are applied on our evidence

graph for generic multi-stage attack investigation.

4.2 Spectral Clustering for Generic Investigation

Clustering methods have been widely used in exploratory data analysis, with the intuition

that similar or closely related objects should be grouped together. In the evidence graph

space, our motivation is based on the reasoning that coordinated multistage attacks would

form significant natural graph clusters, which differentiate them from irrelevant background

noise and false positives. Our perception of “natural graph cluster” could be justified by the

following two views.

• The Random Walk View: A random walk on a graph could be regarded as a Markov

process which randomly jumps from one node to another. Thus graph clustering can be

interpreted as finding clusters such that a random walk will mostly stay inside the same

cluster and seldom jump between clusters [17]. The analogy to random walks could be

found in many multistage attack scenarios where the attacker jumps to the compromised

host and initiates attacks in the next step. Automated attacks such as worms are also

designed to follow this behavior pattern. Intuitively, the group of hosts involved in a

coordinated attack will form a cluster in our aggregated evidence graph such that a

random walk will visit most of the corresponding nodes before wandering out.

• The Graph Cut View: From the graph cut view, clustering is to find clusters in the

graph structure such that weights of edges between different clusters are minimized while

weights of edges within the cluster are maximized [17]. In the aggregated evidence graph,

the equivalent interpretation is to find groups of hosts with a higher scale of attack
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correlation between group members, while the scale of attack correlation between group

members and outsiders is lower.

We can see that the two views are strongly related to each other. In the random walk

model, let the edge weight between node vi and vj be wij , then the transition probability of

a random walk from vi to vj is given by Pij = wij/di, where di =
∑n

j=1 wij is the weighted

degree of node vi. Consequently for clusters that have minimal weights between each other,

the probability of a random walk jumping from one cluster to another is also low.

4.2.1 Graph Laplacian Spectrum

Spectral clustering methods are based on the Laplacian spectrum of graphs. It is known

that many principal structure properties of a graph are closely related to its graph spectrum

[7,34,68]. To characterize the properties of a graph and extract information from its structure,

we compute the graph spectrum using its Laplacian matrix representation. Let the aggregated

primary evidence graph of size n be denoted by GA = (V, E) with node set V = v1, v2, ..., vn

and edge set E ⊆ V × V . The weighted adjacency matrix A of GA is defined as:

A(i, j) =





w(i,j), if (i,j) ∈ E

0 otherwise.
(4.1)

Note that the aggregated evidence graph GA is an undirected graph. Therefore the adja-

cency matrix A is symmetric and has only real eigenvalues. w(i, j) represents the edge weight

between node i and j in GA. Then the degree matrix D is constructed as a n × n diagonal

matrix with degrees d1, d2, ...dn on the diagonal where degree of a node di =
∑n

j=1 w(i, j). The

unnormalized Laplacian representation is given by L = D − A. In this work we adopt the

normalized graph Laplacian as follows:

Ln := D− 1
2 LD− 1

2 = I −D− 1
2 AD− 1

2 (4.2)

The Laplacian spectrum of a graph is given by eigendecomposition of its normalized Lapla-

cian matrix Ln, i.e. Ln = ΦΛΦT where Λ = diag(λ1, λ2, ..., λ|V |) is a diagonal matrix of
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eigenvalues and Φ = (φ1, φ2, ..., φ|V |) is the matrix composed with eigenvectors as columns.

The graph Laplacian spectrum then refers to the set of eigen values (λ1, λ2, ..., λ|V |) ordered

by magnitude, which provides an insight into global structure properties of the graph [7]. For

example, the multiplicity of eigenvalue 0 indicates the number of connected components in

the graph. Note that in the ideal case when all intrusion activities are captured in primary

evidence, hosts involved in the same attack scenario should belong to the same connected

component in our aggregated evidence graph GA.

Figure 4.1 Graph Laplacian spectrum for LLDOS 2.0 dataset

Our objective is to extract the attack scenario from large complex evidence graphs through

graph Laplacian spectrum analysis. Here an initial experiment is conducted on the Lincoln

lab LLDOS 2.0 dataset we analyzed in Section 3.7.2. A heuristic spectral clustering procedure

was applied where components of significant magnitude in each of the k leading eigenvectors

are extracted as a cluster [65].

Figure 4.1 shows eigenvalues of the aggregated primary evidence graph’s normalized Lapla-

cian. We truncate the graph spectrum by picking the leading eigenvectors corresponding to

the n smallest eigenvalues v1, v2, ..., vn as they are more informative of graph structure. Dis-

tribution of eigenvectors v1, v2, v3, v4 is shown in Figure 4.2. In each eigenvector we identify

the components with significant magnitude and extract corresponding subgraphs from the raw
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Figure 4.2 Distribution of leading eigenvectors from LLDOS 2.0 graph

evidence graph GP for validation.

• For principal eigenvector v1, the corresponding subgraph is shown in Figure 4.3(a). The

largest magnitude component in v1 identifies host 131.84.1.31, which is target of the

DDOS attack. An isolated background attack component is also extracted.

• Figure 4.3(b) shows the subgraph corresponding to significant components in eigenvector

v2. We observe that it represents a subset of the components represented in principal

eigenvector v1.

• As can be seen in Figure 4.3(c), components of significant magnitude in eigenvector

v3 maps to several routers and service hosts in the DMZ, which are brought up by

background traffic artifacts.

• In eigenvector v4, we observe that components of most significant magnitudes maps to

the two DDOS agent hosts 172.16.115.20 and 172.16.112.50. The other nodes shown in

Figure 4.3(d) are also caused by background artifacts.

The initial basic graph spectrum analysis shows that important identities of the attack

scenario are successfully extracted with the leading eigenvectors. However a more systematic
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(a) Subgraph for significant components in v1

(b) Subgraph for significant components in v2

(c) Subgraph for significant components in v3

(d) Subgraph for significant components in v4

Figure 4.3 Sub evidence graphs extracted from leading eigenvectors
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clustering scheme is needed to reduce the amount of irrelevant identities in the extracted

subgraph.

4.2.2 Recursive Spectral Clustering Algorithm

Generally a clustering scheme on the graph structure is defined by choosing clusters that

optimize an objective function of graph partitions. Specifically, spectral clustering is used

as an approximation of the optimal normalized edge cut [52]. For two disjoint clusters A

and B, edge cut is defined as sum of the edge weights between nodes in cluster A and B,

i.e. cut(A,B) =
∑

i∈A,j∈B wij . From the graph cut view, the normalized cut proposed by

Shi and Malik [52] has the advantage of considering both connectivity between clusters and

connectivity inside each cluster to avoid trivial clusters. Its objective function is defined as

Ncut(A,B) =
cut(A,B)
vol(A)

+
cut(A,B)
vol(B)

(4.3)

where vol denotes the total weight of edges originating from nodes in the cluster, i.e.

vol(A) =
∑

i∈A di. We note that the normalized edge cut also been proved to have formal

equivalence with random walk in graphs [33]. To find a clustering that minimize Ncut has

been proved to be NP-hard [17]. However, it has been shown that relaxing Ncut leads to

spectral clustering using the normalized Laplacian [52], i.e. spectral clustering can be used as

an approximation of the optimal normalized cut. Compared to traditional clustering methods

such as the single linkage approach used in [63,64,66], spectral clustering not only often provides

better results, but is also more computationally efficient with current linear algebra packages

such as LAPACK [2].

Generally speaking, spectral graph clustering can be summarized into three basic stages:

1. Matrix formulation: Construct Laplacian matrix representation of the graph.

2. Spectrum computation: Compute the graph Laplacian spectrum by eigen decomposition.

With k eigenvectors the graph is represented in the subspace spanned by the selected

eigenvectors. In essence, this is to map nodes in the graph to points in a lower dimensional

space.
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input : Aggregated primary evidence graph GA = (VA, EA), eigenvector magnitude
threshold P , minimal graph componet size threshold S

output: Primary attack clusters CP

begin1

if GA has more than one connected component then2

divide GA into its components and recurse on each component;3

end4

if |VA| < S then5

stop and return;6

end7

Construct normalized Laplacian matrix Ln of GA;8

Compute spectrum of Ln and select the principal eigenvector v1;9

Initialize set of nodes N ← ∅, set of edges E ← ∅;10

N ← set of nodes corresponding to points in principal eigenvector v1 with11

magnitude greater than P ;
E ← set of edges in GA with both endpoints in N ;12

Output CP ← (N, E);13

V ′
A ← VA \N ,E′

A ← EA \ E;14

Recurse on G′
A ← (V ′

A, E′
A);15

end16

Algorithm 5: Recursive spectral clustering algorithm

3. Cluster assignment: Form clusters of points in the lower dimensional space and assign

corresponding cluster membership to nodes in the original graph.

Several spectral clustering algorithms have been proposed in past work [8, 17]. For the

normalized Laplacian Ln, the leading eigenvectors that correspond to the smallest non-zero

eigenvalues are generally used in graph clustering [7]. If the desired number of clusters k is

known, a common approach is to utilize the normalized Laplacian matrix Ln in step 1, select

k leading eigenvectors from the Laplacian spectrum in step 2 and use the traditional k-means

clustering algorithm on the Rn×k matrix to form k clusters in the lower dimensional space.

However, in general intrusion analysis we have no prior knowledge for the optimal size of cluster

or desired number of clusters.

In this work we develop a recursive spectral clustering approach to avoid the bias of selecting

an arbitrary number of clusters. The detailed procedure is presented in Algorithm 5. As

illustrated in Figure 4.4(a), the initial round of clustering is performed on Laplacian spectrum
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(a) (b)

(c)

Figure 4.4 Recursive spectral clustering illustration

of the original aggregated primary evidence graph GA. One significant cluster is extracted

from the principal eigenvector v1, i.e. eigenvector corresponding to the smallest non-zero

eigenvalue λ1. As shown in figure 4.4(a) and figure 4.4(b), the extracted significant cluster

is then truncated from the original aggregated evidence graph GA. Consequently the result

graph G′
A could be consisted of multiple disconnected components. Then in the next round

the Laplacian spectrum is recomputed for each of the remaining non-trivial graph component

whose size of each graph component is above the minimum graph component size threshold

S. The recursive clustering process continues until all remaining graph components are too

trivial for inspection. The significant clusters extracted are candidates of potential coordinated

attack scenarios for further evaluation.

In summary major objective of our spectral clustering approach is to identify coordinated
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multi-stage attack scenarios because they naturally form significant clusters in the aggre-

gated primary evidence graph. Throughout the process we are not relying on any a priori

knowledge of host vulnerability or causal dependency between exploits to prune away back-

ground noise and false positives. However if the attack process is just a “single shot” exploit,

our approach would not be effective as the cluster structure would not be significant and

additional verification is needed to differentiate the genuine atomic attack from background

noise.

4.2.3 Experimental Results

We evaluate our spectral clustering approach with the attack dataset prepared under ARDA

contract No. NBCHC030117 as well as the MIT Lincoln Lab DARPA 2000 LLDOS1.0 dataset.

The evaluation metrics used here are defined to solely focus on structure-based clustering

results. We perform receiver operating characteristics (ROC) analysis to evaluate performance

of the proposed spectral clustering approach, which is based on two quantitative metrics: true

positive rate and false positive rate. If a host is extracted in clustering and it is actually a

member of the true attack group, it is counted as a true positive; if the host is not a member

of the true attack group but is included in the extracted cluster, it is counted as a false

positive. As both datasets contain a ground truth file that could be used to check against our

clustering results, we calculate true positive rate and false positive rate as follows. The set of

hosts correspond to the set of nodes in the graph component on which spectral clustering is

performed.

True positive rate =
# of true positives

# of hosts involved in the true attack scenario
(4.4)

False positive rate =
# of false positives

# of hosts irrelevant to the true attack scenario
(4.5)
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4.2.3.1 Experiment Results with ARDA Bankshot Dataset

Here we first apply spectral clustering to reexamine the ARDA “Bankshot” dataset de-

scribed in Section 4.2.3.1. According to the ground truth, the multi-stage attack consists of

the following phases:

(1) The attacker probes the protected domain 100.10.20.0/24 from 74.205.

114.158 and launches several failed exploit attempts from 42.152.69.166 against a Windows

host 100.10.20.4;

(2) The attacker probes the network from 74.205.114.158, then successfully compromises a

Linux host 100.20.200.15 through a local Apache exploit.

(3)The attacker uses 100.20.200.15 as the launching point to probe hosts inside the trusted

domain 100.10.20.0/24, then launches exploits to break into host 100.10.20.8.

For convenience of illustration we denote the following labels for important hosts in the at-

tack truth. Attacker 1 : 42.152.69.166; Attacker 2 : 74.205.114.158; Failed Target : 100.10.20.4;

Victim: 100.10.20.8 and Stepping Stone: 100.20.200.15.

Through the preprocessing scheme presented in Algorithm 1, a total of 58715 Snort alerts

are reduced into 625 hyper alerts for constructing the initial evidence graph GP , which consists

of 205 nodes and 625 edges. After performing graph aggregation based on attack phases and

relevant resources as described in Algorithm 3, the aggregated evidence graph GA consists

of 205 nodes and 356 edges. We also observe that in GA, 30 out of a total of 31 connected

components are of trivial size. Therefore spectral clustering is applied on the only significant

component C10, which contains 112 nodes and 232 edges.

Following Algorithm 5, we perform spectral clustering on the principal eigenvector v1 from

Laplacian spectrum of C10. As shown in Figure 4.5(a), the set of highlighted nodes are the

cluster we extracted in the very first iteration and the recursion terminates as all remained

graph components are trivial. We can see from the cross marked nodes that hosts involved in

the attack truth have significant magnitudes in the principal eigenvector v1. Just for further

verification and illustration purpose, the sub-evidence graph corresponding to the extracted

cluster is shown in Figure 4.5(c). We can see that all hosts involved in the attack scenario are
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Figure 4.5 Spectral clustering analysis of component C10 in ARDA graph
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successfully identified through our spectral clustering approach. The local Apache exploit on

Stepping Stone is not detected because only network based evidence is used in analysis. Though

the four hosts 100.10.20.20, 100.20.1.3, 100.1.10.101 and 131.58.63.160 are false positives caused

by background noise, we will perform further filtering in cluster evaluation phase. True positive

rate for the extracted cluster is 100% and false positive rate is 3.7%. To evaluate overall

performance of spectral clustering on the ARDA attack dataset, we plot the ROC curve shown

in Figure 4.5(b), which illustrates the trade off between true positives and false positives.

4.2.3.2 Experiment Results with LLDOS1.0 Dataset

The MIT Lincoln Lab DARPA 2000 LLDOS 1.0 dataset presents a multi-stage attack

scenario that consists of five phases. For convenience, we denote the following labels for

important hosts in the attack truth. Origin of the exploits is Attacker : 202.77.162.213. The

three hosts that have been successfully compromised in step 3 are Victim A: 172.16.112.50,

Victim B : 172.16.112.10 and Victim C : 172.16.115.20. The final target of DDoS attack is

Victim D : 131.84.1.31.

1. Network Sweep: The Attacker performs IP sweeps to discover live hosts in the target

networks.

2. Vulnerability Scan: The Attacker probes the live hosts discovered to find exploitable

Sadmind daemons.

3. Break in: The Attacker breaks into Victim A, Victim C and Victim C through the

Sadmind vulnerability.

4. Installation: The Attacker installs Mstream DDoS software on the three compromised

hosts.

5. DDoS Attack: The Attacker access the compromised hosts by telnet and initiates DDoS

attack towards Victim D.

The attack lasts around 3 hours and about 200M tcpdump packet traces are collected

from the DMZ and inside network, most of which are innocuous background traffic. Through
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(a) Aggregated primary evidence graph
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Figure 4.6 Evidence graph and Laplacian spectrum for LLDOS 1.0 dataset

preprocessing, a total of 36555 Snort alerts are reduced into 291 hyper alerts for constructing

the initial raw primary evidence graph GP , which consists of 71 nodes and 291 edges. After

graph aggregation as described in Algorithm 3, the aggregated evidence graph GA consists of

71 nodes and 100 edges.

Figure 4.6(b) shows eigenvalues of the normalized Laplacian for the aggregated evidence

graph GA. The 2 zero eigenvalues denotes that there exist two disconnected components in

the graph. We denote the smaller graph component as C1 and the larger component as C2.

Intuitively we can see that the trivial component C1 exhibits a star pattern centered around

Victim D, which represents the DDoS attack. Note that C1 is disconnected from C2 because

of spoofed IP addresses used in the DDoS attack. Therefore we move on to perform spectral

clustering on component C2.

Figure 4.7(a) shows the principal eigenvector v1 from the Laplacian spectrum of C2, from

which we expect to extract important entities in the coordinated attack scenario. Following Al-

gorithm 5, the cluster of highlighted nodes are extracted in the first iteration and the recursion

terminates. Graph nodes corresponding to Attacker,Victim A,Victim B and Victim C have
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Figure 4.7 Spectral clustering analysis component C2 in LLDOS 1.0 graph

significant magnitudes in the principal eigenvector v1 and can be easily extracted in clustering.

Just for verification purpose, the sub-evidence graph correspond to the extracted cluster is

shown in Figure 4.7(c), which successfully identifies the complete coordinated attack scenario

except for the DDoS stage. Host 172.16.112.100 is the only false positive extracted in the

cluster. Therefore in graph component C2, the true positive rate is 100% and false positive

rate is 1.7%.

An interesting observation is that relaxing the threshold leads to an immediate set of false

positives 172.16.114.50, 172.16.114.20, 172.16.114.30, 172.16.114.10 and 172.16.114.1, which

are routers and service hosts in the DMZ. By examining the primary evidence graph we ob-

serve a large number of ICMP related alerts among these servers, which is not related to the
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foreground attack. To our best knowledge, this non-malicious anomaly has not been uncov-

ered in previous analysis. From this observation we note that clusters extracted from primary

evidence could represent benign anomalies such as network misconfiguration. In Chapter 6 we

present automated cluster evaluation to differentiate the benign anomalies from true coordi-

nated attack clusters.

4.3 Graph Perturbation Analysis

We have shown that entities involved in a coordinated attack can be effectively extracted

with spectral clustering. For validation and comparable evaluation with previous works, ex-

perimental results presented are based on public synthetic attack datasets. In many cases, the

major controversy with artificial datasets is not the arrangement of sophisticated foreground

attacks, but the robustness of background traffic. In real-world networks, the noise level in

background traffic varies dramatically and the number of false positives in IDS alerts could be

overwhelming. Therefore an immediate concern comes forth: How would the spectral cluster-

ing approach perform in a more adverse operational environment? In particular, how would

the increase of false positives affect the effectiveness of clustering results? In order to evaluate

our spectral clustering approach with regard to different levels of background noise, we first

analyzed the scenarios of false positives in evidence graph context. Based on the analysis,

we developed a graph perturbation algorithm to inject simulated noise into an given evidence

graph. Robustness of spectral clustering results is then quantitatively evaluated at multiple

noise levels.

4.3.1 Background Noise Analysis

An ideal evidence graph consists of true attacks, and only true attacks. In other words, no

false positives are built into the evidence graph and no true positives are missing. Consequently

natural connected components would readily reveal entities and events in the true attack

scenario. However, in real world networks attack traffic is generally a tiny drop in the tide of

regular background traffic. In most IDS deployments, the amount of false positives triggered
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by innocent network activities are often overwhelming. Intuitively, each false positive would

result in a spurious edge in our raw primary evidence graph. As the aggregated evidence graph

is constructed such that each undirected edge is a numeric representation of corresponding

edge(s) in the raw evidence graph, its structure would also be affected in different ways.

Let G be the aggregated evidence graph constructed from primary evidence to perform

spectral clustering. Then as shown in Figure 4.8, G is consisted of two distinctive components:

the ideal component S, which is generated from true positives; and the noise component

N , which represents IDS false positives generated by background traffic. The result graph

G is then decided by the correlation between S and N . To evaluate the robustness of our

spectral clustering approach, we first study how S would be affected by different categories of

background noise in the evidence graph model.

Figure 4.8 Background noise in evidence graph model

When false positives are mingled with true alerts, the aggregated evidence graph could be

affected in two aspects: (1) topology and (2) correlation strength. Topology changes refer to

adding new nodes and edges to the original graph structure while correlation strength changes

refer to weight changes of existing edges. In accordance we differentiate background noise from

the following two perspectives: (1) locality correlation and (2) functional correlation.

4.3.1.1 Locality Correlation

Let the ideal evidence graph be S = (nt, et) where nt is the set of entities in the true attack

scenario and et represents the set of true attack events. For the example shown in Figure

4.9(a), nt = {n1, n2, n3, n4} and et = {e1, e2, e3, e4, e5}. Similarly, ef represents a false positive

alarm and its associated entities are denoted as nf . Based on locality relationship between ef
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and S, background noise can be classified into the following types:

• Isolated noise: As shown in Figure 4.9(b), the noise edge ef is completely separated from

the true cluster S.

• Adjacent noise: In Figure 4.9(c), the noise edge ef is adjacent to the true cluster S.

• Internal overlapping noise: As shown in Figure 4.9(d), the noise edge ef locates inside

the true cluster S and overlaps with existing true edge e2.

• Internal independent noise: As shown in Figure 4.9(e), the background noise edge ef

locates inside the true cluster S but does not overlap with any existing true edge.

The aforementioned four types of background noise have different implications to graph

clustering.

Firstly, Isolated Noise refers to the scenario where neither source nor target of the false posi-

tive belongs to the true attack cluster. Essentially the spurious edges added to the raw evidence

graph is isolated from the true cluster. In the aggregated evidence graph both topology and

weight of the true cluster are unaffected. Note that when multiple instances of isolated noise

are coincidentally connected, spurious clusters of significant size could be created. However, as

our spectral clustering is performed independently on each individual graph component, clus-

tering results for the true attack scenario could only be masqueraded when the spurious cluster

resides in the same graph component with the true cluster. Spurious clusters in different graph

components would not affect the true cluster.

Secondly, Adjacent Noise refers to the scenario where either source or target of the false

alert belongs to the true attack cluster. In other words false positives in this category are

triggered between entities in the true attack group and their innocent neighbors. In this

scenario, topology and correlation strength of existing edges inside the true cluster are not

affected. However, connection density between the true cluster and innocent neighbor nodes

would be increased, which potentially could increase the structural importance of these noise

nodes. Note that structure importance of the innocent neighbor depends on the number and
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(a) Original graph S (b) Isolated noise

(c) Adjacent noise (d) Internal overlapping noise

(e) Internal independent noise

Figure 4.9 Noise classifications by locality correlation

weight of edges connecting to hosts in the true attack cluster. For example, when one innocent

neighbor has false positives associated with multiple members of the true attack group, it is

highly likely to be extracted as a member of the true cluster. Consequently Adjacent Noise

would lead to higher false positive rates in spectral clustering results.

Thirdly, Overlapping Internal Noise refers to the scenario where (1) both source and target

of false alerts are members of the true attack cluster and (2) true attack events already exist

between the source and target. Therefore in the raw evidence graph the noise edge overlaps

with true edges. In the aggregated evidence graph, topology of the true cluster remains the

same. However, correlation strength between the source and target host could be changed.
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The new correlation strength would be decided by the combination of true and noise edges,

i.e. how the attack phase and resource of the overlapping noise edge are correlated with that

of original true edges. In next step we will further discuss this scenario from the perspective

of functional correlation.

Finally, Independent Internal Noise refers to the scenario where (1) both source and target

of false alerts are members of the true attack group and (2) there exist no true attack events

between the source and target. Therefore in the raw evidence graph the noise edge is inde-

pendent to existing true alarm edges. In the aggregated evidence graph, topology of the true

cluster is changed such that additional spurious edges are created between existing nodes. Ag-

gregated weight of the spurious edge is solely decided by attack phase and resource definition

of the false positive. Note that Independent Internal Noise increases internal intensity of the

true cluster and potentially would make the true cluster more structurally significant in the

graph.

4.3.1.2 Functional Correlation

In the aggregated evidence graph, weight of an edge is computed through the attack phase

and relevant resource based aggregation process to represent the combined effect of attacks

between the pair of hosts. Let a pair of hosts in the true attack cluster be n1, n2 and the set

of true positives between them be et. A false positive edge ef between n1, n2 can be classified

in terms of its functional correlation with the set of true positives et:

• Uncorrelated noise: The false positive edge en has no functional correlation with et ,

i.e. the noise event neither advances attack phases nor extends relevant resources of true

attack events. Therefore uncorrelated noise would be ignored in the attack phase and

resource based aggregation process. Aggregated edge weight in the evidence graph would

not be affected.

• Correlated noise: The false positive edge en is functionally correlated to et, i.e. the noise

event advances attack phase or extends relevant resources of true attacks. Therefore
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correlated noise would be merged with true attack events and consequently increase the

edge weight in aggregated evidence graph.

4.3.1.3 Integrated Classifications

Both locality and functional correlation types are defined based on relationship between

false positives and true positives. We do not explicitly consider the correlation between in-

stances of false positives. Functional correlation between false positives would increase ag-

gregated weight of spurious edges. Locality correlation among random false positives could

result in significant graph clusters. However, noise clusters formed purely by false positives are

not mingled with true attack clusters. After graph clustering, we perform semantic scenario

evaluation on each extracted cluster to filter out the noise clusters.

From an integrated view of both locality and functional correlations, background noise in

the evidence graph model can be further classified into the categories shown in Table 4.1.

Category Isolated Adjacent Overlapping Internal Independent Internal
Uncorrelated X X X X
Correlated N/A N/A X N/A

Table 4.1 Integrated noise categories

By definition, Uncorrelated is the only functional correlation type applicable to locality

correlation categories Isolated Noise, Adjacent Noise and Independent Internal Noise. On the

other hand, both Uncorrelated and Correlated types of functional correlation are applicable

to Overlapping Internal Noise. Uncorrelated and Overlapping Internal Noise does not affect

the topology or edge weights of true attack cluster. Correlated and Overlapping Internal Noise

would increase the aggregated weight of true attack edges.

4.3.2 Noise Simulation through Graph Perturbation

To evaluate spectral clustering results at increased noise levels, we develop a simulation

approach that could conveniently inject specified level and type of background noise into the

given attack dataset.
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(a) Noise injection by raw false alerts

(b) Noise injection by graph perturbation

Figure 4.10 Approaches for injecting noise into given attack dataset

As shown in Figure 4.10, there exist two approaches for noise simulation. In the first ap-

proach, simulated noise is generated as random raw IDS alerts. Attack phase and relevant

resource based aggregation is then performed on the mixed set of injected false positives and

original true positives to construct the aggregated graph. Noise generation in this approach

would be more complicated and less controllable. To satisfy functional correlation require-

ments, the random alerts need to be selected based on the attributes of existing true positives.

On the other hand, any variation in raw alerts would eventually be represented by struc-

ture and weight changes in the aggregated evidence graph to affect spectral clustering results.

Therefore in a second approach, we can generate background noise by directly perturbing the

original aggregated evidence graph. Fusing background noise with the true attack scenario is

then transformed into perturbation operations on the original aggregated evidence graph. As

seen in Figure 4.8, G can also be regarded as the result of a series of perturbation operations

on the ideal graph component S.

Algorithm 6 presents our graph perturbation process, which is inspired by the approach

proposed in [62]. For coverage and controllability considerations, parameters of our graph
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input : Target graph component GT = (VT , ET ), weight scale factor w, size scale
factor s

output: Perturbed graph component GN = (VN , EN )
begin1

GN ← GT ;2

num ← |VN | × s ;3

repeat4

Pick a random node np1 from VN ;5

Pick a random node np2 from VN \ np1 ;6

Create edge ecurr = (np1, np2) with weight scale factor w ;7

if there exists edge eprev between np1 and np2 then8

weightecurr = weightecurr + weighteprev ;9

EN = EN \ eprev ;10

end11

EN = EN
⋃

ecurr ;12

num ← num− 1 ;13

until num > 0;14

Output GN = (VN , EN ) ;15

end16

Algorithm 6: Graph perturbation for noise simulation

perturbation algorithm are defined as follows:

• Target component GT : As spectral clustering is performed individually on each con-

nected graph component in the aggregated evidence graph, target component is the

graph component that contains the true attack cluster.

• Weight scale factor w: The weight scale factor w controls the weight of an newly created

perturbation edge, which is calculated as random uniform noise U(0, 1) scaled by 10w.

• Size scale factor s: The size scale factor s is the ratio between number of perturbation

edges to be generated and number of edges in the target component. Higher s denotes

that more spurious edges would be created.

The objective of Algorithm 6 is to inject simulated background noise into an existing target

graph component which contains the true attack cluster. Structure of GT would be changed

by the different categories of noise generated in permutation. From aforementioned analysis

we can summarize that:
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• Isolated Noise could potentially form significant independent cluster in the perturbed

component.

• Adjacent Noise would increase the inter-cluster density between the true cluster and its

neighboring nodes in the perturbed component.

• Both Overlapping Internal Noise and Independent Internal Noise would increase the

intro-cluster density of true attack cluster in the perturbed component.

We can see that Isolated Noise and Adjacent Noise would result in higher level of mas-

querading to the true cluster and adversely affect spectral clustering results. On the other

hand, Overlapping Internal Noise and Independent Internal Noise are benign for extracting

the true cluster.

Noise Type Probability
Isolated (1− Ntrue

Ntarget
)2

Adjacent Ntrue
Ntarget

× (1− Ntrue
Ntarget

)
Overlapping Internal ( Ntrue

Ntarget
)2 × ( Etrue

NtrueC2
)

Independent Internal ( Ntrue
Ntarget

)2 × (1− Etrue

NtrueC2
)

Table 4.2 Distribution of noise categories in graph permutation

In the perturbation process presented in Algorithm 6, connectivity of the target graph GT

is maintained such that the perturbed graph GN remains a connected graph. Let the number

of nodes in target component be Ntarget, the number of nodes in the true cluster be Ntrue and

the number of true attack edges be Etrue. Distribution of different categories of noise generated

in graph permutation is shown in Table 4.2, where NtrueC2 = Ntrue!
2(Ntrue−2)! .

4.3.3 Experimental Results

We perform noise simulation analysis on the ARDA “Bankshot” attack dataset described

in section 4.2.3.1. The only significant component C10 in the aggregated evidence graph is

used as the target component for perturbation as it contains the true attack cluster. The

ARDA dataset already contains background noise at the level of real-world traces collected
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from a large corporate network. We further inject background noise by graph perturbation to

evaluate the robustness of spectral graph clustering results.

In following experiments, we apply ROC analysis to evaluate clustering results with respect

to different noise levels through variations in weight scale factor w and size scale factor s.

4.3.3.1 Variation in weight scale factor

Performance of spectral graph clustering w.r.t variations in weight scale factor w is shown

in Figure 4.11. In Figure 4.11(a), 4.11(b), 4.11(c)and 4.11(d), the ROC curves are obtained

with w increasing from 0.1 to 0.4 in steps of 0.1, i.e. weight of perturbation edges are random

uniform noise U(0, 1) scaled by increasing magnitude from 100.1 to 100.4. In each figure the

size scale factor n is fixed as n = 0.5, n = 1, n = 1.5, n = 2 respectively. Each curve in figure

4.11 is the average of 50 random perturbations with the specified set of (n, w).

4.3.3.2 Variation in size scale factor

Performance of spectral graph clustering w.r.t variations in size scale factor n is shown

in Figure 4.12. In Figure 4.12(a), 4.12(b), 4.12(c) and 4.12(d), the ROC curves are obtained

with n increasing from 0.5 to 2 in steps of 0.5, i.e. the number of perturbation edges injected

are increased from 50% In each figure the weight scale factor w is fixed as w = 0.1, w = 0.2,

w = 0.3 and w = 0.4 respectively.

As shown in Figure 4.11 and Figure 4.12, our spectral clustering approach demonstrates

robustness to different types of injected background noise. In all perturbation scenarios with

different combinations of n and w, we are still able to extract the cluster of coordinated

attackers at acceptable cost. For example in Figure 4.12(a), when the number of noise edges in

the original graph component C10 is further increased by 60%( i.e. n = 0.6 ), spectral clustering

is able to achieve true positive rate of 86% before the false positive rate reaches 9%. Even at

a higher size scale factor n = 1.5, true positive rate remains over 80% with false positive rate

below 10%. In Figure 4.11(a), similar results can be observed at a high weight scale w = 0.4.

As expected, performance of spectral clustering gradually degrades with the increase of n and
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w. However, with our phase and resource based aggregation scheme, random background

attacks and false positives are not likely to result in high aggregated weights as coordinated

attacks do, therefore strengthens the immunity of clustering analysis to background noise.
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Figure 4.11 Perturbation analysis on ARDA graph: variations in w
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Perturbation Analysis: w=0.3, varied n

n=0.3,w=0.3
n=0.6,w=0.3
n=0.9,w=0.3
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(c) w = 0.3, varied n
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Perturbation Analysis: w=0.4, varied n
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(d) w = 0.4, varied n

Figure 4.12 Perturbation analysis on ARDA graph: variations in n
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CHAPTER 5. PAGERANK MODEL FOR TARGETED

INVESTIGATION AND HIDDEN MEMBER IDENTIFICATION

5.1 Background and Motivation

In Chapter 4 we note that natural graph clusters formed by multi stage attacks could be

justified by the analogy to a Random Walk. In the evidence graph model, each edge represents

a potential path the attacker could take, i.e. the attacker initiates attacks from the source

node and moves forward as he takes possession of the compromised target node.

A similar notion has been followed by the web graph which models the World Wide Web

structure. In the Pagerank model proposed by Page and Brin [30], web graph is viewed as repre-

sentation of a first order Markov process. In the web graph model, states of the Markov process

are represented by nodes(web pages) and transitions are represented by edges(hyperlinks). In

the adjacency matrix P of the web graph, each element Pij denotes the transition probability of

the surfer moves from node vi to vj . If all outgoing edges of vi are treated equal then Pij = 1
di

out

for each node vj that has an incoming edge from vi. The Pagerank score is calculated based

on the transition matrix P as follows:

P = αP +
(1− α)eeT

n
(5.1)

where e is a vector of all ones and n is size of the web graph. In Equation 5.1, α ∈ [0, 1]

is called the damping factor, which represents the probability that the surfer continue to

successors of current page. Likewise 1−α denotes the probability that the surfer stops clicking

links on current page and restarts from a random new page. Generally, each node in the graph

is assigned an uniform probability 1−α
n that it will be chosen when the surfer makes a fresh



www.manaraa.com

84

new start. Let PR = (r1, r2, · · · , rn) be the dominant eigenvector of P , then ri is the Pagerank

value for node i, which represents its global importance in the web graph.

We note that in this sense our evidence graph is in analogy to the web graph and the

random walk of attacker in essence fits into the Pagerank model. If we leverage Pagerank

methods on the aggregated evidence graph, higher Pagerank score would intuitively denote

higher probability of being visited in a multi-stage attack scenario. In this chapter we will

present how to apply customized Pagerank model for two specific cases of attack analysis:

targeted investigation and hidden member identification.

5.2 Ranking for Targeted Investigation

In many cases it is desirable to incorporate out-of-band domain knowledge for more “tar-

geted” investigation. For instance, the analyst might only be interested in attack scenarios

related to a given watch list of hosts. Hosts on the watch list could be ones with high asset

value or ones deemed as suspicious from upfront knowledge. While the spectral clustering

approach can be applied to generically extract attack clusters in the evidence graph, it is more

intuitive to directly identify the entities that have significant “relative importance” with re-

spect to hosts on the watch list. In our evidence graph model, “relative importance” denotes

that importance of a candidate node is computed with respect to a set of “root nodes” instead

of the whole graph.

Definition 2. Given graph G = (V, E), a set of root nodes R and a set of candidate nodes C

where R,C ⊂ V , the relative importance problem is to rank the importance of nodes in C with

respect to R.

Inspired by the work of White et al. [67], we retrofit an extension to the basic Pagerank

model named “personalized Pagerank” to compute relative importance for our targeted inves-

tigation purpose. As shown in Equation 5.2, the personalized Pagerank model replaces eeT

n

with evT where vT is a probability vector called the personalization vector [30]. In the basic

Pagerank model illustrated in Equation 5.1, the probability of a node being selected as the new

start is uniformly distributed over the whole graph. For the personalized Pagerank model, the
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probability is explicitly specified by the personalization vector instead. The intuition behind

personalized Pagerank is that by constructing the personalization vector with respect to the

given watch list, we are able to rank potential attackers in terms of their relative importance.

P = αP + (1− α)evT (5.2)

To detect potential attackers with significant relative importance to the given watch list LW ,

we perform personalized Pagerank evaluation on the aggregated evidence graph GA. Referring

to Equation 5.2, P is the normalized adjacency matrix of GA. The root set is defined as

R = VGA

⋂
LW and the set of candidate nodes is defined by C = VGA

\ R. We construct the

personalization vector as v = {p1, · · · , pn} where pi denotes the prior importance assigned to

node i and p1 + p2 + · · ·+ pn = 1. In this work we simply set pi based on root set membership

and all nodes in the root set R are treated equal. In other words, if node i ∈ R, then pi = 1
|R| ,

otherwise pi = 0. The personalized Pagerank scores are then given by the dominant eigenvector

of P . The result ranking indicates the relative importance with respect to the root set, i.e.

level of suspicion for potential attackers associated with the given watch list. Hosts identified

with high relative importance scores then are selected for further cluster evaluation.

Here we illustrate the application of personalized Pagerank model for targeted investigation

with the ARDA “Bankshot” scenario analyzed in Section 4.2.3.1. Suppose the watch list is

defined as the set of three exploited internal servers shown in Figure 4.5(c): LW ={Failed Target,

Stepping Stone, Victim}. Personalized Pagerank is then applied on the graph component C10

of aggregated evidence graph GA with root set R = LW to compute the relative importance

rank. The top 5 ranked hosts out of 112 are shown in Table 5.1.

Rank 1 2 3 4 5
Host Attacker 2 100.10.20.20 Attacker 1 100.20.1.3 131.58.63.160
Score 0.52 0.10 0.07 0.06 0.06

Table 5.1 Personalized Pagerank scores for ARDA scenario

From Table 5.1 we can see that Attacker 2 stands out with a score significantly higher

than that of other suspects, as in ground truth it successfully compromises Stepping Stone
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and Victim. Attacker 1 is not as obvious because it only initiates a failed attack attempt

towards the Failed Target. Therefore it is difficult to be differentiated with the false positive

hosts 100.10.20.20, 100.20.1.3 and 131.58.63.160. In summary, the relative importance ranking

effectively reveals the attackers and their respective risks to hosts on the given watch list.

5.3 Ranking for Hidden Member Identification

Clusters extracted from the aggregated primary evidence graph may only provide a limited

view of the coordinated attack scenario. Intrusion investigation cannot be completed without

considering “hidden members” in an attack scene that are characterized by non-explicit-attack

malicious activities. As another high level example, the attacker uses a different host other than

the ones involved in explicit attacks as the control master. After successfully compromising

several targets and installing agents on them, the master sends out commands to the agents

to launch further attacks. We are able to identify the cluster of attacker and victims because

explicit attacks are captured in IDS alerts and represented in the primary evidence graph.

However the master will evade detection because the control traffic appears benign to primary

evidence sensors(e.g. simply some telnet connections from the master to the agents). These

“conduits” of malicious behavior need to be effectively identified through secondary evidence

analysis.

In Section 3.6, we propose an interactive hypothesis testing approach to integrate secondary

evidence into our analysis process. For the above example, an intuitive hypothesis to discover

the hidden master could be formed as “In terms of telnet connections, which hosts in the

network are the most important with respect to the set of victims?”.

Our approach evaluates the hypothesis in two steps. As presented in Section 3.6, the

first step is to perform knowledge based secondary evidence filtering based on the triple fil-

ter(Association, Classification, Time). Based on the notion that benign activities associated

with a misfeasor could be suspicious, we note that the set of clusters extracted from primary

evidence provides a flexible guide for defining Association. The Association set could be a sin-

gle cluster Ci, a subset of Ci or union of multiple clusters. Using analysis results from primary
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evidence greatly reduce the search space of secondary evidence. The secondary evidence graph

then can be constructed with the filtered events.

In the second step, the Personalized Pagerank model can be used to rank potential hidden

attackers in terms of their relative importance to the defined Association set as “root nodes” in

the secondary evidence graph. The relative importance rank essentially provides a quantitative

measure for the notion of Non-coincidence, i.e. activities of certain patterns increase the chance

of being intentional rather than incidental. In the previous example, the master should be

labelled with a higher scale of suspicion because it has connections with multiple stepping

stones.

Let A be the Association set defined for secondary evidence filtering. The secondary

evidence graph for relative importance evaluation is denoted as Gr = (Vr, Er) where Er is the

set of edges corresponding to the filtered non-explicit-malicious events and Vr represents the

hosts associated with these events. The set of root nodes can be defined by R = A
⋂

Vr and

the set of candidate nodes is thus defined by C = Vr \R. Potential hidden members then can

be evaluated with the relative importance score computed by Equation 5.2.

Here we illustrate the application of personalized Pagerank model for hidden member iden-

tification with the multi stage attack scenario illustrated in Figure 5.1(a). For convenience

we adopt the following notations: Attacker, Stepping Stone 1, Stepping Stone 2, Victim: and

Warez Server. The scenario is constructed as follows: Attacker initiates a Samba remote buffer

overflow exploit against Stepping Stone 1 ; After break in attack tools are uploaded from Warez

Server to Stepping Stone 1 ; Then Stepping Stone 1 initiates Windows DCOM remote buffer

overflow exploit against Stepping Stone 2 ; After break in attack tools are also uploaded from

Warez Server to Stepping Stone 2 ; Stepping Stone 2 then initiates Frontpage Server 2000

buffer overflow exploits against Victim. Finally sensitive data is transferred from Victim to

the Warez Server.

The original primary evidence graph GP is shown in Figure 5.1(a). The edge labels indicate

attack phases and relevant resources of corresponding alerts. Also the numbers represent the

sequence of alerts in time order. The highlighted nodes are hosts involved in the true coordi-
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(a) Primary evidence graph with attack clusters

(b) Secondary evidence graph for relative importance evaluation

Figure 5.1 Example scenario for hidden member identification

nated attack scenario while the rest are background artifacts. To introduce more intricacy we

deliberately drop the alerts captured between Stepping Stone 1 and Stepping Stone 2. As such

it is intuitive to see that two clusters c1 ={Attacker, Stepping Stone 1} and c2 ={Stepping

Stone 2, Victim} can be identified in the graph. However the Warez Server is not identified

because ftp flows do not trigger Snort alerts. To construct the secondary evidence graph Gr for

hidden member identification, it is straightforward to use the clusters from primary evidence

graph to define Association, i.e. A = c1 ∪ c2. Suppose traces of exploit codes is found on the

stepping stones, it is reasonable to hypothesize the occurrence of file transfers in the attack and
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therefore Classification = {all file transfer flows}. Figure 5.1(b)shows the secondary evidence

graph constructed with the filtered events. The highlighted circular nodes denote the root set

R and the other nodes belong to the candidate set C. The relative importance computation

by Equation 5.2 is then applied on Gr. As shown in Table 5.2, personalized Pagerank score of

the Warez Server is significantly higher than that of other hosts, which reveals its anomalous

connection pattern with extracted attack clusters and suggests that it is a potential hidden

member in the attack scenario.

Rank 1 2 3 4 5
Host Warez Server 129.186.215.41 129.186.215.40 192.168.21.5 192.168.21.6
Score 0.244 0.084 0.036 0.032 0.032

Table 5.2 Personalized Pagerank scores for hidden member identification

In summary, the personalized Pagerank model provides a systematic and quantitative met-

ric that well fits into our interactive hypothesis testing procedure. Based on different hypothesis

in secondary event filtering and root set definition, the relative importance ranks could lead to

different views of potential hidden members for further investigation. As an immediate exten-

sion, the investigator can also assign weighted importance to nodes in the root set according

to their roles and asset value. Finally, current techniques in efficient computation of Pagerank

enable us to handle large scale intrusion analysis with ease.

5.4 Discussions

In addition to network events, evidence in an attack scenario could also include host events

such as account creation, backdoor installation, system binary replacement and data tamper-

ing. These host based evidence could also be integrated into our hypothesis testing and hidden

member identification scheme. For a host that is genuinely involved in the attack, here we

give a brief summary of the analysis scenarios based on the availability of different types of

evidence:

1. The host is revealed in network based primary evidence (with or without host based

evidence).
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In this case the host is readily incorporated in the primary evidence graph, therefore we

are able to apply the spectral clustering procedure to extract it out. Hidden member

identification with personalized Pagerank methods would not be necessary.

2. The host is revealed in host based primary evidence but not in any network based primary

evidence.

In this case it is highly likely that the remote exploits are missed by network based sensors.

In the primary evidence graph, corresponding node to the host becomes a isolated “hot

spot”: its local state is activated as suspicious from host based evidence, but no event

that causes the state change is available from network based evidence. Therefore we can

apply interactive hypothesis testing to evaluate potential hidden attackers associated with

these “hot spots”. Firstly, the set of suspicious isolated nodes would define Association,

i.e. the root set |R| in personalized Pagerank. Secondly, clues found in host based events

would be used to formulate Classification and Time) for filtering flows. For instance, if

we find a listening port associated with a suspicious process on the host, we can only

consider flows associated with this particular port.

3. The host is not revealed in any type of primary evidence.

In this case we don’t have much choice other than hypothesize-and-test for hidden mem-

ber identification. One concern is that the Pagerank result could bias towards network

entities with intense normal activities. For instance, an innocent public web server could

have high relative importance score because of its intense connectivity in secondary evi-

dence graph of certain hypothesis. Multiple trials and additional out-of-band information

are needed for further evaluation.
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CHAPTER 6. CLUSTER EVALUATION WITH ATTACK SCENARIO

RECONSTRUCTION

6.1 Motivation

In this chapter we present schemes for automated cluster evaluation and semantic scenario

reconstruction. Spectral clustering and Pagerank methods aim at Attack Group Identification,

i.e. extract clusters of hosts from the evidence graph as candidate members of coordinated

attacks. Naturally the next important step of forensic analysis is to help investigators fur-

ther examine the candidate clusters and reconstruct genuine intrusion scenarios. Our cluster

evaluation module is motivated by the following observations:

1. Candidate clusters extracted by graph structure analysis methods contain undesired ar-

tifacts. As presented in Section 4.3.1, Adjacent noise and Internal noise could result in

irrelevant entities and events to be extracted in the same cluster with those of the true

attack scenario. Further semantic attack analysis is needed to separate the mixture and

reconstruct the true scenario.

2. Significant clusters in the evidence graph could represent atypical but benign activities,

such as a network misconfiguration. We note that clusters caused by benign activities

tend to have persistent patterns. For example, in the MIT Lincoln Lab DARPA 2000

dataset LLDOS1.0 we observed a significant cluster that consists of a set of routers

in the DMZ, with a huge number of ICMP related alerts among them. Clusters like

this will be persistently generated until the misconfiguration is corrected. In contrast,

clusters caused by genuine coordinated attacks appear in a more spontaneous manner

and therefore worth more attention. Moreover, considering the fact that IDS alerts are
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predominantly false positives, it is quite likely that false alarms could randomly form

densely connected clusters in the evidence graph. In both cases the whole extracted

cluster should be identified as irrelevant, i.e.Isolated noise.

Given candidate clusters extracted from the evidence graph, the challenges of cluster eval-

uation essentially can be summarized as:

How to differentiate clusters formed by genuine coordinated attacks from those formed by

random false alarms or persistent benign activities? Furthermore, how do we further filter out

background noise in true attack clusters and reconstruct the coordinated attack scenario?

Considering the large number of exploitable vulnerabilities and many variations of attack

strategies, manual inspection of all candidate clusters would be a heavy burden for inves-

tigators. Moreover, establishing comprehensive expert rule sets for the task would also be

non-trivial and error prone. The major contribution presented in this chapter is a systematic

and automated approach for cluster evaluation and scenario reconstruction. Our approach

is based on the notion of target-oriented effective event sequence(TOEES). Through scenario

analysis and data trace driven experiments, we demonstrate that clusters resulted from co-

ordinated attack activities possess characteristics inherently different from that of benign or

random noise clusters. Moreover, we present how to reconstruct multistage attack scenarios

with target-oriented effective event sequence.

6.2 Target-Oriented Effective Event Sequence

To transform multiple parallel edges in the raw primary evidence graph GP into a sin-

gle unified numeric representation in the aggregated evidence graph GA for structure based

analysis, we have developed an aggregation scheme based on two generalized attributes of

primary evidence: attack phase and relevant resource. Firstly, intrusion events naturally fall

into different attack phases, which indicate the attacker’s respective objectives throughout the

intrusion process; Secondly, relevant resources represents the set of network and host proper-

ties exploited, which indicate the attacker’s means to achieve his objective in a certain attack

phase. Essentially, multi-stage attacks can be regarded as an increasing process of the at-
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tacker’s knowledge and capability towards its target, which could be uniquely characterized by

the advancement of attack phase and/or expansion of relevant resources. Each effective step

to increase the attacker’s capability and knowledge would be revealed by either proceeding

to a more advanced attack phase or exploiting alternate resources to achieve objective of the

current attack phase. To represent the combined effect of multiple observed events between

a pair of nodes in the raw evidence graph, only the intrusion events that demonstrate either

advancement of attack phase and/or expansion of relevant resources are counted towards the

aggregated edge weight. In the aforementioned graph aggregation phase, the evaluation for at-

tack phase and relevant resource is restricted to the sequence of events between a source/target

pair.

In the cluster evaluation module, we extend the attack phase and relevant resource evalu-

ation to the whole set of hosts and events in the given cluster through an integrated metric.

Specifically, the integrated metric is designated to effectively detect attackers’ strategy of sub-

version by Role Perturbation. Role perturbation refers to the scenario that the attacker employs

multiple identities to perform different functional tasks in a multi-stage attack. It is commonly

used to masquerade the intention and procedure of multi-stage attacks, in the mean time make

it more difficult for analysts to identify them from background noise. Here we illustrate the

variations of role perturbation with the following case analysis.

First, we examine the unperturbed scenario as the starting point. Figure 6.1(a) shows an

sequence of attack events between a pair of hosts A and B. Intuitively, the attacker use host A

to collects information of target B(event 1), exploits the target to gain access privilege(event 2)

and eventually obtains data from the target(event 3). Without any role perturbation, we are

able to label the sequence of events between hosts A and B as highly likely to be an intentional

multi-stage attack, in which host A is identified as the scanner, attacker and affiliated data

warehouse.

However, the attacker could easily distribute the functional roles to different identities to

disguise the attack process. As shown in Figure 6.1(b), the attacker use host A to collect target

information (event 1), then uses host B to launch privilege access exploit (event 2) and finally
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uses host D to obtain data from the target(event 3). Consequently the functional roles are

distributed to 3 different identities: A as scanner, B as attacker and D as the affiliated data

warehouse. We regard this type of perturbation as Role Distribution.

In Role Distribution scenarios, variations in attack phases and relevant resources are initi-

ated from different sources to the same target. When viewed from any individual (source,target)

pair, the isolated event does not qualify for the criteria of attack phase advance or relevant

resource expansion. Therefore it is difficult to judge whether it is part of a coordinated attack

or background noise. Consider the scenario illustrated in figure 6.1(c), suppose two identical

alerts are reported between (source,target) pairs (B,C) and (C,E). The former is a false alarm

while the latter is part of a coordinated attack(event 2). When examined individually, it is

difficult to tell which alert is more suspicious. However from a target oriented view, the alarm

between (B,C) should be recognized with higher priority as host C is more likely to be the

target of a coordinated multi-stage attack.

The second type of role perturbation is Role Alternation. In Role Alternation scenarios,

one identity could play multiple roles in attacks against different targets. As shown in Figure

6.1(d), the cluster contains multiple attacks against different targets. Hosts A, C and E are

involved in the attacks against target B while hosts C and F participate in the attacks against

target D. Note that host C is involved in both attacks but takes different functional roles, i.e.

Attacker towards target D and Affiliated in the attack towards target B.

Another related scenario to consider is Simultaneous Attacks. In this case, targets and

time spans of multiple independent attack scenarios overlap with each other. Consequently

the significant cluster extracted from evidence graph would consist a mixture of identities

and interleaved sequence of events from different attack scenarios. Our objective then is to

differentiate the identities and events of simultaneous independent attacks. By “independent”

we are assuming that there are no collaborations between the attackers, i.e. they are not aware

the existence of each other and do not share achievements(for example, the backdoor installed

by one attacker cannot be used by other attackers). Otherwise the collaborated attacks could

be classified as Role perturbation cases from a single attacker.
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(a) (b)

(c)

(d)

Figure 6.1 Examples of role perturbation

In recognition of the aforementioned Role Perturbation scenarios, we develop the notion

of target-oriented effective event sequence(TOEES) for automated cluster evaluation and sce-

nario reconstruction. A target-oriented effective event sequence is defined by the following

components:

• Attackers H: Each TOEES possesses a set of entities that are attackers involved in the

event sequence.
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• Target T : Each TOEES has one unique entity that represents target of the event

sequence.

• Sequence of effective events E: For a set of TOEES S1, . . . , Si, . . . , Sn and a can-

didate event e, e is considered as an effective event for Si if and only if (1) target of

e matches T of Si; (2) comparing to existing events in Si, e either proceeds to a more

advanced attack phase or attempts to achieve objective of the current attack phase by

expanding the set of relevant resources exploited. (3) source of e does not exist in H of

any other Sj that has the same target T .

Note that our definition of target-oriented effective sequence is essentially a depiction of the

attack from the “victim’s view”. More specifically, it focuses on the following manifestations:

• Where and when did the intrusion originate?

• How did the intrusion happen, i.e. what are the relevant resources exploited?

• What are the likely consequences, i.e. what capabilities have been possibly achieved by

the intrusion?

The process for identifying target-oriented effective event sequences in a given candidate

cluster is shown in Algorithm 7. Here we illustrate steps of the algorithm in detail with the

example scenario shown in Figure 6.2. Each event is tagged with abstracted attack phase( R:

recon, E: exploit, P: post-attack ) and sequence number in increasing time order. Relevant

resources of the exploits are left out to simplify the illustration. Table 6.2 shows how the

target-oriented effective event sequences are formulated in correspondence to each developing

event.

Events R1 and E2 initialized TOEES I. Event R3 does not satisfy the attack phase and rel-

evant resource advancement requirement for TOEES I, therefore a new TOEES II is initiated.

Event E4 belongs only to TOEES I because its source B already exists in the attackers set H

of TOEES I. On the other hand, events E5 and P7 potentially could be added to TOEES I

and II because their sources does not exist in the attacker set H of both TOEES. Also note



www.manaraa.com

97

input : candidate cluster C = (VC , EC)
output: set of target-oriented effective event sequences S

begin1

count ← 0 ;2

S ← ∅ ;3

Et ← sort EC in increasing time order ;4

foreach event e ∈ Et do5

Look up attack phase Pe, relevant resource Re ;6

if S is empty then7

Scount ← e ;8

Hcount ← esrc, Tcount ← etgt ;9

PRcount ← (Pe, Re) ;10

H ← Hcount ;11

count + + ;12

end13

else14

foundMatch ← FALSE ;15

foreach Si where i ≤ count do16

if esrc * Hi&&esrc ⊆ H then17

continue;18

end19

if Ti ≡ etgt&&(Pe, Re) * PRi then20

Si ← Si ∪ e ;21

Hi ← Hi ∪ esrc ;22

PRi ← PRi ∪ (Pe, Re) ;23

H ← H ∪Hi ;24

foundMatch ← TRUE ;25

end26

end27

if !foundMatch then28

count + + ;29

Scount ← e ;30

Hcount ← esrc, Tcount ← etgt ;31

PRcount ← (Pe, Re) ;32

end33

end34

end35

end36

Algorithm 7: Identify target-oriented effective event sequences in a candidate cluster
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Figure 6.2 Example to identify target-oriented effective event sequence

Event TOEES I TOEES II
R1 E:{R1} H:{A} T:{C} N/A
E2 E:{R1,E2} H:{A,B} T:{C} N/A
R3 skip E:{R3} H:{E} T:{C}
E4 E:{R1,E2,E4} H:{A,B} T:{C} skip
E5 E:{R1,E2,E4,E5} H:{A,B,F} T:{C} E:{R3,E5} H:{E,F} T:{C}
E6 E:{R1,E2,E4,E5,E6} H:{A,B,F} T:{C} skip
P7 E:{R1,E2,E4,E5,E6,P7} H:{A,B,F,D} T:{C} E:{R3,E5,P7} H:{E,F,D} T:{C}

Table 6.1 Steps of constructing target-oriented effective event sequence

that event E6 could be skipped by both sequences: it cannot be added to TOEES II because

its source A exists in the host set H of TOEES I. Whether it could be added to TOEES I

depends on comparison of attack phase/relevant resource comparisons with the existing set of

events {R1,E2,E4,E5}.
After event P7, two target-oriented effective attack sequences are identified in the candidate

cluster. Each TOEES readily reveals a coordinate attack scenario in spite of the attacker’s

role perturbation strategies. In addition, the two TOEESs present the two attack threads as

potential Simultaneous Attacks in the same cluster, though ambiguity for host F and D needs

to be further clarified with additional evidence.
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The notion of attack phase and relevant resource evaluation, when extended to the extracted

candidate graph clusters, provides an useful tool for methodically analyzing multi-stage attack

scenarios. In addition to cluster suspicion evaluation, TOEES is also applied as the means

for Attack Scenario Reconstruction. Conceptually wise, each TOEES is a natural depiction of

multi-stage attacks towards a specific target. Construction of TOEES allows us to effectively

identify identities in a coordinated attack scenario in spite of Role Perturbation strategies.

Because random false alarms generally do not have the coordinated nature to form TOEES,

we are able to further filter out false positives in the candidate cluster. Note that in scenarios

that involve multiple exploited targets, further correlation needs to be established between

multiple TOEES. For example in the stepping-stone attack scenario shown in figure 6.1(d),

two separate TOEESs are identified with target hosts B and D respectively. However host

C is shared in the set of Attackers in both TOEESs and can be used to correlate the event

sequences into a complete scenario.

6.3 Experiments and Discussion

As a proof of concept, our cluster evaluation prototype is tested on the ARDA “Bankshot”

attack dataset, which contains one genuine multi-stage attack scenario and random background

attacks. The candidate attack cluster extracted with our spectral clustering approach (as shown

in Figure 4.5(c)) is applied as the input for cluster evaluation.

Through Algorithm 7, two multi- event TOEESs are identified as representations of suspi-

cious multi-stage attacks. As shown in Table 6.3, TOEES 1 reconstructs the intrusion attempts

targeted at Failed Target and TOEES 2 captures the attacks towards Victim. We can see that

though the attacker changes identity at different stages, the multi-stage attack scenario is

clearly reconstructed with the two TOEESs. Moreover, the process of constructing TOEES

further filters out the false positive identities 100.10.20.20, 100.1.10.101 and 131.58.63.160 in

the candidate cluster. It can be seen that most random false alarms do not satisfy the attack

phase and relevant resource correlation requirement for TOEES construction. The only false

positive 100.20.1.3 included in TOEES 2 would need additional host-based attack verification
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to be filtered out.

TOEES 1 TOEES 2
H {Attacker 1, Attacker 2} {Attacker 2, Stepping Stone, 100.20.1.3}
T {Failed Target} {Victim}
E {probe vul,attack admin(iis),attack admin(windows ssl)} {probe vul,attack admin(iis),attack admin(apache)}

Table 6.2 TOEESs identified from candidate attack cluster

For comparison with the true attack cluster, we generate synthetic non-malicious clusters

as the baseline. As presented in Algorithm 8, the input target evidence graph GT is built from

attack-free background traffic collected on the target network. The input parameter X specifies

size of the the random cluster generated. Note that we implicitly enforce the restriction that

the extracted cluster will always be a connected graph.

input : Target evidence graph GT = (VT , ET ), cluster size X

output: Random cluster C = (VC , EC)
begin1

VC ← ∅, EC ← ∅ ;2

Pick a random seed node ns from VT ;3

VC ← ns ;4

repeat5

VN ← unique external neighbors of all nodes in VC ;6

if |VN | ¿ 0 then7

Pick a random node nt from VN ;8

EC ← EC∪ all edges between VC and nt ;9

VC ← VC ∪ nt ;10

end11

else12

break ;13

end14

X ← X − 1 ;15

until X > 1;16

Output C = (VC , EC) ;17

end18

Algorithm 8: Algorithm for extracted random cluster from given evidence graph

In our experiment 100 random clusters are generated from attack-free background traffic

trace collected on the same network where the genuine multistage attacks happen. Then

Algorithm 7 is applied to identify TOEESs in each random cluster. The result shows that
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no multi-event TOEES is identified, i.e. there is no suspicion of multi-stage attacks in the

random clusters. The observation illustrates that our TOEES based evaluation is effective in

distinguishing between true attack cluster and random attack-free clusters.

We also apply TOEES evaluation to the cluster of DMZ hosts identified in MIT Lincoln

Lab DARPA 2000 LLDOS 1.0 dataset. The cluster is extracted in spectral clustering results

because of a large number of ICMP related alerts caused by network misconfiguration, which

is irrelevant to the true multi-stage attack scenario. Based on Algorithm 7, only 4 single-event

TOEES is identified, which shows that the cluster is a non-malicious anomaly. Furthermore,

the same TOEES pattern is repeatedly observed at different time slots, which suggests that

the atypical cluster is caused by certain benign persistent activities.

Finally, our target-oriented evaluation is also suitable for automated monitoring on a given

watch list of assets to be protected. Periodical procedures can be set up to identify TOEESs

targeted at the specified assets and alert for further examination when TOEES of multiple

events are detected.
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the thesis contributions and briefly discuss some areas that

of interest for future research.

7.1 Conclusion

With the increasing threat of cyber attacks, prevention and detection techniques are not

sufficient for information security needs. Post-incident network forensics analysis has become

an important practice to extract meaningful evidence from security sensors and understand the

attack scenario. However, limitations of current evidence sources and attack correlation tech-

niques impose great challenges for investigators to perform effective, scalable and systematic

analysis.

This dissertation improves the state of art for network forensic analysis with a novel graph

based approach that is applicable for practical, large scale analysis and less dependent on ad

hoc expertise. Our prototype system utilizes a variety set of techniques to provide an effective,

flexible and scalable solution for analyzing complicated multi-stage attacks. We also integrate

non-explicit secondary evidence from heterogeneous information sources into the correlation

process to provide a comprehensive view of the attack.

In summary, we have addressed challenges in network forensic analysis with the following

approaches:

Evidence Graph Model and Hierarchical Reasoning Framework. We first present

the evidence graph model which provides an intuitive representation of collected forensic ev-

idence as well as the foundation for forensic analysis. After evidence preprocessing, hyper

alerts are used to construct the raw primary evidence graph. Based on the evidence graph,
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we develop a hierarchical reasoning framework that consists of two levels: local reasoning and

global reasoning. Local reasoning employs fuzzy inference to infer the functional states of an

host level entity from its local observations. On the other hand, global reasoning performs

graph structure analysis to identify the set of highly correlated hosts that belong to the co-

ordinated attack scenario. For global reasoning, we develop a graph aggregation scheme to

evaluate the combined effects of multiple exploits based on attack phase classifications and

relevant resources. The raw primary evidence graph is abstracted into the aggregated primary

evidence graph, an undirected simple graph efficient for structure based analysis.

Primary Attack Group Identification. Building upon the aggregated primary evidence

graph, we provide graph structure based analysis for attack group identification in two inves-

tigation modes. Firstly, for generic find-the needle-in-the-haystack investigation, we develop

a recursive spectral graph clustering algorithm to identify multistage attacks by extracting

significant clusters from the graph Laplacian spectrum. Our approach effectively differentiates

coordinated multistage attacks from irrelevant background noise. Furthermore, we analyze dif-

ferent categories of background noise in the evidence graph model and evaluate the robustness

of clustering results through graph perturbation analysis. Secondly, for targeted investigation

with out-of-band information, we apply the personalized Pagerank model to quantitatively

evaluate the relative importance of potential attackers with regard to the given watch list.

Hidden Attacker Identification and Hypothesis Testing. As an unique contribution,

we integrate secondary evidence into intrusion investigation to identify “hidden attackers” that

are characterized by non-explicit-attack malicious activities. We propose a flexible hypothesis

testing procedure for missing secondary evidence. In the interactive hypothesis testing process,

analysis results of primary evidence are used to guide the exploration of secondary evidence.

Filtered secondary evidence are then instantiated to build the enriched secondary evidence

graph. In addition, we customized the personalized Pagerank algorithm to quantitatively rank

potential hidden attackers in terms of their relative importance to entities identified in primary

attack analysis.

Cluster Evaluation with Scenario Reconstruction. Finally, we develop automated
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suspicion evaluation with semantic scenario reconstruction for the candidate clusters extracted

in attacker group identification. Specifically, we present the notion of Target-Oriented Effective

Event Sequence(TOEES), which allows us to further filter out false positives and effectively

reconstruct multi-stage attack scenarios. Our approach is capable of identifying stealthy Role

Perturbation attack strategies and scenarios of Simultaneous Attacks.

We believe the system presented represents an important contribution to network forensic

analysis research. In comparison to previous works, our methods perform well for post-incident

multi-stage attack analysis with less demand on domain-expert -knowledge based attack mod-

eling. Information required to build and analyze the evidence graph can be obtained from

current security sensors, without the need for detailed a priori host vulnerability knowledge

and hard coded causality rules. Spectral clustering and Pagerank methods are performed on

the host-centric graph where each graph node represents a host level network entity. With

existing techniques for high performance spectral graph clustering and Pagerank computation,

our methods can efficiently handle intrusion investigation in large networks.

7.2 Future Work

There are still many open problems in our network forensic analysis approach that remain

to be addressed. In the following, we introduce several possible directions for further study.

Evaluation with Real World Datasets One of the biggest open challenges is the eval-

uation with more realistic attack datasets. There have been many controversies on evaluation

results with synthetically generated attack datasets, mainly because background traffic and

network model in current artificial datasets are often overly simplistic when compared to those

in real world networks. However, there are two problems associated with using real-world

attack datasets. Firstly, privacy issue is a big concern for organizations to make real world

attack datasets publicly available. A flexible data sanitization process needs to be developed

to provide privacy protection as well as the preservation of critical information for analysis

usability. Secondly, real world attack datasets do not readily have ground truth. Without

a common baseline it is difficult to make a fair comparison between performance of different
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analysis methods. Therefore a challenging task is to generate ground truth for real world

datasets in an automated approach. It is especially difficult because of the dilemma that the

ground truth has to be universally accepted but verification from the real attacker can hardly

be obtained.

Distributed Analysis Forensic evidence may be scattered across a large number of net-

works and administrative domains. It is often not efficient and realistic to perform analysis at

a centralized evidence repository. It is important to develop a distributed algorithm to perform

independent initial analysis and exchange local results to reach a unified global view of evi-

dence in an incremental and iterative manner. We will conduct analytical study to evaluate the

reasoning accuracy and information exchange overhead of the distributed reasoning procedure.

In addition, performance of the reasoning algorithm in partial and incremental deployment of

agents needs to be studied.

Attack Case Profiling Attack case profiling is based on the promise that attackers tend

to repeat certain behavioral patterns or strategies. Given a new extracted scenario, the natural

question to ask is whether it is similar to patterns seen in the past or elsewhere. Knowing

the recurrence of attack scenarios would help the investigator form appropriate responses. As

our evidence graph model presents a graph based description of attack patterns, this is similar

to the decision problem of subgraph isomorphism. One potential is to develop efficient graph

spectra characterizations for encoding and matching of attack patterns. Here a major challenge

is to minimize the cospectrality effect of graphs and provide an effective spectral signature.

Adequate attack strategy based abstraction is needed prior to encoding and matching of graph

structure. In a noisy dataset, a more forgiving mechanism such as graph edit distance could

also be considered. We will do cross validation tests to evaluate how well the profiling methods

can relate known similar scenarios and differentiate unrelated scenarios.
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